Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -29,7 +29,7 @@ def format_stars(score):
|
|
29 |
score_int = int(score)
|
30 |
except Exception:
|
31 |
score_int = 0
|
32 |
-
# Render stars in black with a slightly larger font
|
33 |
return f'<span style="color: black; font-size:1.5em;">{"★" * score_int}</span>'
|
34 |
|
35 |
def make_link(mname):
|
@@ -39,9 +39,12 @@ def make_link(mname):
|
|
39 |
|
40 |
def generate_html_table_from_df(df):
|
41 |
"""
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
"""
|
46 |
max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1
|
47 |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
@@ -55,7 +58,7 @@ def generate_html_table_from_df(df):
|
|
55 |
for _, row in df.iterrows():
|
56 |
energy_numeric = row['gpu_energy_numeric']
|
57 |
energy_str = f"{energy_numeric:.4f}"
|
58 |
-
#
|
59 |
bar_width = (energy_numeric / max_energy) * 100
|
60 |
score_val = row['energy_score']
|
61 |
bar_color = color_map.get(str(score_val), "gray")
|
@@ -70,20 +73,21 @@ def generate_html_table_from_df(df):
|
|
70 |
html += '</tbody></table>'
|
71 |
return html
|
72 |
|
73 |
-
|
|
|
74 |
df = pd.read_csv('data/energy/' + task)
|
75 |
if df.columns[0].startswith("Unnamed:"):
|
76 |
df = df.iloc[:, 1:]
|
77 |
-
# Convert energy_score to integer and total_gpu_energy from kWh to Wh
|
78 |
df['energy_score'] = df['energy_score'].astype(int)
|
|
|
79 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
80 |
df['Model'] = df['model'].apply(make_link)
|
81 |
df['Score'] = df['energy_score'].apply(format_stars)
|
82 |
-
|
83 |
-
df = df.sort_values(by='gpu_energy_numeric', ascending=
|
84 |
return generate_html_table_from_df(df)
|
85 |
|
86 |
-
def get_all_model_names_html():
|
87 |
all_df = pd.DataFrame()
|
88 |
for task in tasks:
|
89 |
df = pd.read_csv('data/energy/' + task)
|
@@ -95,35 +99,66 @@ def get_all_model_names_html():
|
|
95 |
df['Score'] = df['energy_score'].apply(format_stars)
|
96 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
97 |
all_df = all_df.drop_duplicates(subset=['model'])
|
98 |
-
|
99 |
-
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=
|
100 |
return generate_html_table_from_df(all_df)
|
101 |
|
102 |
-
def get_text_generation_model_names_html(model_class):
|
103 |
df = pd.read_csv('data/energy/text_generation.csv')
|
104 |
if df.columns[0].startswith("Unnamed:"):
|
105 |
df = df.iloc[:, 1:]
|
106 |
-
# Filter by model class if the "class" column exists
|
107 |
if 'class' in df.columns:
|
108 |
df = df[df['class'] == model_class]
|
109 |
df['energy_score'] = df['energy_score'].astype(int)
|
110 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
111 |
df['Model'] = df['model'].apply(make_link)
|
112 |
df['Score'] = df['energy_score'].apply(format_stars)
|
113 |
-
|
114 |
-
df = df.sort_values(by='gpu_energy_numeric', ascending=
|
115 |
return generate_html_table_from_df(df)
|
116 |
|
117 |
-
|
118 |
-
|
|
|
|
|
119 |
mapping = {
|
120 |
"A (Single Consumer GPU) <20B parameters": "A",
|
121 |
"B (Single Cloud GPU) 20-66B parameters": "B",
|
122 |
"C (Multiple Cloud GPUs) >66B parameters": "C"
|
123 |
}
|
124 |
model_class = mapping.get(selected_display, "A")
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
# --- Build the Gradio Interface ---
|
129 |
|
@@ -142,12 +177,11 @@ demo = gr.Blocks(css="""
|
|
142 |
|
143 |
with demo:
|
144 |
gr.Markdown(
|
145 |
-
"""# AI Energy Score Leaderboard
|
146 |
-
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore)
|
147 |
-
Select different tasks to see scored models. Submit open models for testing and learn about testing proprietary models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)"""
|
148 |
)
|
149 |
|
150 |
-
#
|
151 |
gr.HTML('''
|
152 |
<div style="text-align: center; margin-bottom: 20px;">
|
153 |
<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="margin: 0 15px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Submission Portal</a>
|
@@ -158,56 +192,129 @@ Select different tasks to see scored models. Submit open models for testing and
|
|
158 |
''')
|
159 |
|
160 |
with gr.Tabs():
|
161 |
-
# --- Text Generation Tab
|
162 |
with gr.TabItem("Text Generation 💬"):
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
)
|
180 |
-
|
|
|
|
|
|
|
|
|
181 |
with gr.TabItem("Image Generation 📷"):
|
182 |
-
gr.
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
with gr.TabItem("Text Classification 🎭"):
|
185 |
-
gr.
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
with gr.TabItem("Image Classification 🖼️"):
|
188 |
-
gr.
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
with gr.TabItem("Image Captioning 📝"):
|
191 |
-
gr.
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
with gr.TabItem("Summarization 📃"):
|
194 |
-
gr.
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
with gr.TabItem("Automatic Speech Recognition 💬"):
|
197 |
-
gr.
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
with gr.TabItem("Object Detection 🚘"):
|
200 |
-
gr.
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
with gr.TabItem("Sentence Similarity 📚"):
|
203 |
-
gr.
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
with gr.TabItem("Extractive QA ❔"):
|
206 |
-
gr.
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
with gr.TabItem("All Tasks 💡"):
|
209 |
-
gr.
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
with gr.Accordion("📙 Citation", open=False):
|
212 |
citation_button = gr.Textbox(
|
213 |
value=CITATION_BUTTON_TEXT,
|
@@ -218,4 +325,4 @@ Select different tasks to see scored models. Submit open models for testing and
|
|
218 |
)
|
219 |
gr.Markdown("""Last updated: February 2025""")
|
220 |
|
221 |
-
demo.launch()
|
|
|
29 |
score_int = int(score)
|
30 |
except Exception:
|
31 |
score_int = 0
|
32 |
+
# Render stars in black with a slightly larger font.
|
33 |
return f'<span style="color: black; font-size:1.5em;">{"★" * score_int}</span>'
|
34 |
|
35 |
def make_link(mname):
|
|
|
39 |
|
40 |
def generate_html_table_from_df(df):
|
41 |
"""
|
42 |
+
Given a dataframe with a numeric energy column (gpu_energy_numeric),
|
43 |
+
generate an HTML table with three columns:
|
44 |
+
- Model (the link)
|
45 |
+
- GPU Energy (Wh) plus a horizontal bar whose width is proportional
|
46 |
+
to the energy value relative to the maximum in the table.
|
47 |
+
- Score (displayed as stars)
|
48 |
"""
|
49 |
max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1
|
50 |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
|
|
58 |
for _, row in df.iterrows():
|
59 |
energy_numeric = row['gpu_energy_numeric']
|
60 |
energy_str = f"{energy_numeric:.4f}"
|
61 |
+
# Compute the relative width (as a percentage)
|
62 |
bar_width = (energy_numeric / max_energy) * 100
|
63 |
score_val = row['energy_score']
|
64 |
bar_color = color_map.get(str(score_val), "gray")
|
|
|
73 |
html += '</tbody></table>'
|
74 |
return html
|
75 |
|
76 |
+
# --- Modified functions to include a sort_order parameter ---
|
77 |
+
def get_model_names_html(task, sort_order="High to Low"):
|
78 |
df = pd.read_csv('data/energy/' + task)
|
79 |
if df.columns[0].startswith("Unnamed:"):
|
80 |
df = df.iloc[:, 1:]
|
|
|
81 |
df['energy_score'] = df['energy_score'].astype(int)
|
82 |
+
# Convert kWh to Wh:
|
83 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
84 |
df['Model'] = df['model'].apply(make_link)
|
85 |
df['Score'] = df['energy_score'].apply(format_stars)
|
86 |
+
ascending = True if sort_order == "Low to High" else False
|
87 |
+
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
88 |
return generate_html_table_from_df(df)
|
89 |
|
90 |
+
def get_all_model_names_html(sort_order="High to Low"):
|
91 |
all_df = pd.DataFrame()
|
92 |
for task in tasks:
|
93 |
df = pd.read_csv('data/energy/' + task)
|
|
|
99 |
df['Score'] = df['energy_score'].apply(format_stars)
|
100 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
101 |
all_df = all_df.drop_duplicates(subset=['model'])
|
102 |
+
ascending = True if sort_order == "Low to High" else False
|
103 |
+
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
104 |
return generate_html_table_from_df(all_df)
|
105 |
|
106 |
+
def get_text_generation_model_names_html(model_class, sort_order="High to Low"):
|
107 |
df = pd.read_csv('data/energy/text_generation.csv')
|
108 |
if df.columns[0].startswith("Unnamed:"):
|
109 |
df = df.iloc[:, 1:]
|
|
|
110 |
if 'class' in df.columns:
|
111 |
df = df[df['class'] == model_class]
|
112 |
df['energy_score'] = df['energy_score'].astype(int)
|
113 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
114 |
df['Model'] = df['model'].apply(make_link)
|
115 |
df['Score'] = df['energy_score'].apply(format_stars)
|
116 |
+
ascending = True if sort_order == "Low to High" else False
|
117 |
+
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
118 |
return generate_html_table_from_df(df)
|
119 |
|
120 |
+
# --- Update functions for dropdown changes ---
|
121 |
+
|
122 |
+
# For Text Generation, two dropdowns: model class and sort order.
|
123 |
+
def update_text_generation(selected_display, sort_order):
|
124 |
mapping = {
|
125 |
"A (Single Consumer GPU) <20B parameters": "A",
|
126 |
"B (Single Cloud GPU) 20-66B parameters": "B",
|
127 |
"C (Multiple Cloud GPUs) >66B parameters": "C"
|
128 |
}
|
129 |
model_class = mapping.get(selected_display, "A")
|
130 |
+
return get_text_generation_model_names_html(model_class, sort_order)
|
131 |
+
|
132 |
+
# For the other tabs, each update function simply takes the sort_order.
|
133 |
+
def update_image_generation(sort_order):
|
134 |
+
return get_model_names_html('image_generation.csv', sort_order)
|
135 |
+
|
136 |
+
def update_text_classification(sort_order):
|
137 |
+
return get_model_names_html('text_classification.csv', sort_order)
|
138 |
+
|
139 |
+
def update_image_classification(sort_order):
|
140 |
+
return get_model_names_html('image_classification.csv', sort_order)
|
141 |
+
|
142 |
+
def update_image_captioning(sort_order):
|
143 |
+
return get_model_names_html('image_captioning.csv', sort_order)
|
144 |
+
|
145 |
+
def update_summarization(sort_order):
|
146 |
+
return get_model_names_html('summarization.csv', sort_order)
|
147 |
+
|
148 |
+
def update_asr(sort_order):
|
149 |
+
return get_model_names_html('asr.csv', sort_order)
|
150 |
+
|
151 |
+
def update_object_detection(sort_order):
|
152 |
+
return get_model_names_html('object_detection.csv', sort_order)
|
153 |
+
|
154 |
+
def update_sentence_similarity(sort_order):
|
155 |
+
return get_model_names_html('sentence_similarity.csv', sort_order)
|
156 |
+
|
157 |
+
def update_extractive_qa(sort_order):
|
158 |
+
return get_model_names_html('question_answering.csv', sort_order)
|
159 |
+
|
160 |
+
def update_all_tasks(sort_order):
|
161 |
+
return get_all_model_names_html(sort_order)
|
162 |
|
163 |
# --- Build the Gradio Interface ---
|
164 |
|
|
|
177 |
|
178 |
with demo:
|
179 |
gr.Markdown(
|
180 |
+
"""# AI Energy Score Leaderboard
|
181 |
+
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore) — Select different tasks to see scored models."""
|
|
|
182 |
)
|
183 |
|
184 |
+
# Header links:
|
185 |
gr.HTML('''
|
186 |
<div style="text-align: center; margin-bottom: 20px;">
|
187 |
<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="margin: 0 15px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Submission Portal</a>
|
|
|
192 |
''')
|
193 |
|
194 |
with gr.Tabs():
|
195 |
+
# --- Text Generation Tab ---
|
196 |
with gr.TabItem("Text Generation 💬"):
|
197 |
+
with gr.Row():
|
198 |
+
model_class_options = [
|
199 |
+
"A (Single Consumer GPU) <20B parameters",
|
200 |
+
"B (Single Cloud GPU) 20-66B parameters",
|
201 |
+
"C (Multiple Cloud GPUs) >66B parameters"
|
202 |
+
]
|
203 |
+
model_class_dropdown = gr.Dropdown(
|
204 |
+
choices=model_class_options,
|
205 |
+
label="Select Model Class",
|
206 |
+
value=model_class_options[0]
|
207 |
+
)
|
208 |
+
sort_dropdown_tg = gr.Dropdown(
|
209 |
+
choices=["Low to High", "High to Low"],
|
210 |
+
label="Sort",
|
211 |
+
value="High to Low"
|
212 |
+
)
|
213 |
+
tg_table = gr.HTML(get_text_generation_model_names_html("A", "High to Low"))
|
214 |
+
# When either dropdown changes, update the table.
|
215 |
+
model_class_dropdown.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=tg_table)
|
216 |
+
sort_dropdown_tg.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=tg_table)
|
217 |
+
|
218 |
+
# --- Image Generation Tab ---
|
219 |
with gr.TabItem("Image Generation 📷"):
|
220 |
+
sort_dropdown_img = gr.Dropdown(
|
221 |
+
choices=["Low to High", "High to Low"],
|
222 |
+
label="Sort",
|
223 |
+
value="High to Low"
|
224 |
+
)
|
225 |
+
img_table = gr.HTML(get_model_names_html('image_generation.csv', "High to Low"))
|
226 |
+
sort_dropdown_img.change(fn=update_image_generation, inputs=sort_dropdown_img, outputs=img_table)
|
227 |
+
|
228 |
+
# --- Text Classification Tab ---
|
229 |
with gr.TabItem("Text Classification 🎭"):
|
230 |
+
sort_dropdown_tc = gr.Dropdown(
|
231 |
+
choices=["Low to High", "High to Low"],
|
232 |
+
label="Sort",
|
233 |
+
value="High to Low"
|
234 |
+
)
|
235 |
+
tc_table = gr.HTML(get_model_names_html('text_classification.csv', "High to Low"))
|
236 |
+
sort_dropdown_tc.change(fn=update_text_classification, inputs=sort_dropdown_tc, outputs=tc_table)
|
237 |
+
|
238 |
+
# --- Image Classification Tab ---
|
239 |
with gr.TabItem("Image Classification 🖼️"):
|
240 |
+
sort_dropdown_ic = gr.Dropdown(
|
241 |
+
choices=["Low to High", "High to Low"],
|
242 |
+
label="Sort",
|
243 |
+
value="High to Low"
|
244 |
+
)
|
245 |
+
ic_table = gr.HTML(get_model_names_html('image_classification.csv', "High to Low"))
|
246 |
+
sort_dropdown_ic.change(fn=update_image_classification, inputs=sort_dropdown_ic, outputs=ic_table)
|
247 |
+
|
248 |
+
# --- Image Captioning Tab ---
|
249 |
with gr.TabItem("Image Captioning 📝"):
|
250 |
+
sort_dropdown_icap = gr.Dropdown(
|
251 |
+
choices=["Low to High", "High to Low"],
|
252 |
+
label="Sort",
|
253 |
+
value="High to Low"
|
254 |
+
)
|
255 |
+
icap_table = gr.HTML(get_model_names_html('image_captioning.csv', "High to Low"))
|
256 |
+
sort_dropdown_icap.change(fn=update_image_captioning, inputs=sort_dropdown_icap, outputs=icap_table)
|
257 |
+
|
258 |
+
# --- Summarization Tab ---
|
259 |
with gr.TabItem("Summarization 📃"):
|
260 |
+
sort_dropdown_sum = gr.Dropdown(
|
261 |
+
choices=["Low to High", "High to Low"],
|
262 |
+
label="Sort",
|
263 |
+
value="High to Low"
|
264 |
+
)
|
265 |
+
sum_table = gr.HTML(get_model_names_html('summarization.csv', "High to Low"))
|
266 |
+
sort_dropdown_sum.change(fn=update_summarization, inputs=sort_dropdown_sum, outputs=sum_table)
|
267 |
+
|
268 |
+
# --- Automatic Speech Recognition Tab ---
|
269 |
with gr.TabItem("Automatic Speech Recognition 💬"):
|
270 |
+
sort_dropdown_asr = gr.Dropdown(
|
271 |
+
choices=["Low to High", "High to Low"],
|
272 |
+
label="Sort",
|
273 |
+
value="High to Low"
|
274 |
+
)
|
275 |
+
asr_table = gr.HTML(get_model_names_html('asr.csv', "High to Low"))
|
276 |
+
sort_dropdown_asr.change(fn=update_asr, inputs=sort_dropdown_asr, outputs=asr_table)
|
277 |
+
|
278 |
+
# --- Object Detection Tab ---
|
279 |
with gr.TabItem("Object Detection 🚘"):
|
280 |
+
sort_dropdown_od = gr.Dropdown(
|
281 |
+
choices=["Low to High", "High to Low"],
|
282 |
+
label="Sort",
|
283 |
+
value="High to Low"
|
284 |
+
)
|
285 |
+
od_table = gr.HTML(get_model_names_html('object_detection.csv', "High to Low"))
|
286 |
+
sort_dropdown_od.change(fn=update_object_detection, inputs=sort_dropdown_od, outputs=od_table)
|
287 |
+
|
288 |
+
# --- Sentence Similarity Tab ---
|
289 |
with gr.TabItem("Sentence Similarity 📚"):
|
290 |
+
sort_dropdown_ss = gr.Dropdown(
|
291 |
+
choices=["Low to High", "High to Low"],
|
292 |
+
label="Sort",
|
293 |
+
value="High to Low"
|
294 |
+
)
|
295 |
+
ss_table = gr.HTML(get_model_names_html('sentence_similarity.csv', "High to Low"))
|
296 |
+
sort_dropdown_ss.change(fn=update_sentence_similarity, inputs=sort_dropdown_ss, outputs=ss_table)
|
297 |
+
|
298 |
+
# --- Extractive QA Tab ---
|
299 |
with gr.TabItem("Extractive QA ❔"):
|
300 |
+
sort_dropdown_qa = gr.Dropdown(
|
301 |
+
choices=["Low to High", "High to Low"],
|
302 |
+
label="Sort",
|
303 |
+
value="High to Low"
|
304 |
+
)
|
305 |
+
qa_table = gr.HTML(get_model_names_html('question_answering.csv', "High to Low"))
|
306 |
+
sort_dropdown_qa.change(fn=update_extractive_qa, inputs=sort_dropdown_qa, outputs=qa_table)
|
307 |
+
|
308 |
+
# --- All Tasks Tab ---
|
309 |
with gr.TabItem("All Tasks 💡"):
|
310 |
+
sort_dropdown_all = gr.Dropdown(
|
311 |
+
choices=["Low to High", "High to Low"],
|
312 |
+
label="Sort",
|
313 |
+
value="High to Low"
|
314 |
+
)
|
315 |
+
all_table = gr.HTML(get_all_model_names_html("High to Low"))
|
316 |
+
sort_dropdown_all.change(fn=update_all_tasks, inputs=sort_dropdown_all, outputs=all_table)
|
317 |
+
|
318 |
with gr.Accordion("📙 Citation", open=False):
|
319 |
citation_button = gr.Textbox(
|
320 |
value=CITATION_BUTTON_TEXT,
|
|
|
325 |
)
|
326 |
gr.Markdown("""Last updated: February 2025""")
|
327 |
|
328 |
+
demo.launch()
|