Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -41,9 +41,9 @@ def get_plots(task):
|
|
41 |
df = pd.read_csv('data/energy/' + task)
|
42 |
if df.columns[0].startswith("Unnamed:"):
|
43 |
df = df.iloc[:, 1:]
|
44 |
-
# Convert GPU energy to float
|
45 |
df['total_gpu_energy'] = df['total_gpu_energy'].astype(float)
|
46 |
-
# Convert energy_score to categorical string for proper discrete coloring
|
47 |
df['energy_score'] = df['energy_score'].astype(int).astype(str)
|
48 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
49 |
|
@@ -59,7 +59,7 @@ def get_plots(task):
|
|
59 |
width=800,
|
60 |
color_discrete_map=color_map
|
61 |
)
|
62 |
-
# Hover text
|
63 |
fig.update_traces(
|
64 |
hovertemplate="<br>".join([
|
65 |
"Model: %{y}",
|
@@ -67,11 +67,10 @@ def get_plots(task):
|
|
67 |
"Energy Score: %{customdata[0]}"
|
68 |
])
|
69 |
)
|
70 |
-
#
|
71 |
fig.update_layout(
|
72 |
xaxis_title="GPU Energy (Wh)",
|
73 |
-
yaxis_title="Model"
|
74 |
-
xaxis=dict(tickformat=".4f")
|
75 |
)
|
76 |
return fig
|
77 |
|
@@ -108,8 +107,7 @@ def get_all_plots():
|
|
108 |
)
|
109 |
fig.update_layout(
|
110 |
xaxis_title="GPU Energy (Wh)",
|
111 |
-
yaxis_title="Model"
|
112 |
-
xaxis=dict(tickformat=".4f")
|
113 |
)
|
114 |
return fig
|
115 |
|
@@ -118,7 +116,7 @@ def get_model_names(task):
|
|
118 |
if df.columns[0].startswith("Unnamed:"):
|
119 |
df = df.iloc[:, 1:]
|
120 |
df['energy_score'] = df['energy_score'].astype(int)
|
121 |
-
#
|
122 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].astype(float).apply(lambda x: f"{x:.4f}")
|
123 |
df['Model'] = df['model'].apply(make_link)
|
124 |
df['Score'] = df['energy_score'].apply(format_stars)
|
@@ -148,6 +146,7 @@ def get_text_generation_plots(model_class):
|
|
148 |
# Filter by the selected model class if the "class" column exists
|
149 |
if 'class' in df.columns:
|
150 |
df = df[df['class'] == model_class]
|
|
|
151 |
df['total_gpu_energy'] = df['total_gpu_energy'].astype(float)
|
152 |
df['energy_score'] = df['energy_score'].astype(int).astype(str)
|
153 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
@@ -173,8 +172,7 @@ def get_text_generation_plots(model_class):
|
|
173 |
)
|
174 |
fig.update_layout(
|
175 |
xaxis_title="GPU Energy (Wh)",
|
176 |
-
yaxis_title="Model"
|
177 |
-
xaxis=dict(tickformat=".4f")
|
178 |
)
|
179 |
return fig
|
180 |
|
@@ -216,10 +214,7 @@ with demo:
|
|
216 |
gr.Markdown(
|
217 |
"""# AI Energy Score Leaderboard
|
218 |
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore)
|
219 |
-
|
220 |
-
)
|
221 |
-
gr.Markdown(
|
222 |
-
"""Test your own models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)"""
|
223 |
)
|
224 |
|
225 |
with gr.Tabs():
|
|
|
41 |
df = pd.read_csv('data/energy/' + task)
|
42 |
if df.columns[0].startswith("Unnamed:"):
|
43 |
df = df.iloc[:, 1:]
|
44 |
+
# Convert GPU energy to float (use the raw values from the CSV)
|
45 |
df['total_gpu_energy'] = df['total_gpu_energy'].astype(float)
|
46 |
+
# Convert energy_score to a categorical string for proper discrete coloring
|
47 |
df['energy_score'] = df['energy_score'].astype(int).astype(str)
|
48 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
49 |
|
|
|
59 |
width=800,
|
60 |
color_discrete_map=color_map
|
61 |
)
|
62 |
+
# Hover text shows GPU Energy rounded to 4 decimals
|
63 |
fig.update_traces(
|
64 |
hovertemplate="<br>".join([
|
65 |
"Model: %{y}",
|
|
|
67 |
"Energy Score: %{customdata[0]}"
|
68 |
])
|
69 |
)
|
70 |
+
# Remove forced tickformat so the x-axis uses the raw numbers
|
71 |
fig.update_layout(
|
72 |
xaxis_title="GPU Energy (Wh)",
|
73 |
+
yaxis_title="Model"
|
|
|
74 |
)
|
75 |
return fig
|
76 |
|
|
|
107 |
)
|
108 |
fig.update_layout(
|
109 |
xaxis_title="GPU Energy (Wh)",
|
110 |
+
yaxis_title="Model"
|
|
|
111 |
)
|
112 |
return fig
|
113 |
|
|
|
116 |
if df.columns[0].startswith("Unnamed:"):
|
117 |
df = df.iloc[:, 1:]
|
118 |
df['energy_score'] = df['energy_score'].astype(int)
|
119 |
+
# For leaderboard display, format GPU Energy to 4 decimals
|
120 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].astype(float).apply(lambda x: f"{x:.4f}")
|
121 |
df['Model'] = df['model'].apply(make_link)
|
122 |
df['Score'] = df['energy_score'].apply(format_stars)
|
|
|
146 |
# Filter by the selected model class if the "class" column exists
|
147 |
if 'class' in df.columns:
|
148 |
df = df[df['class'] == model_class]
|
149 |
+
# Use the raw GPU energy values from the CSV
|
150 |
df['total_gpu_energy'] = df['total_gpu_energy'].astype(float)
|
151 |
df['energy_score'] = df['energy_score'].astype(int).astype(str)
|
152 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
|
|
172 |
)
|
173 |
fig.update_layout(
|
174 |
xaxis_title="GPU Energy (Wh)",
|
175 |
+
yaxis_title="Model"
|
|
|
176 |
)
|
177 |
return fig
|
178 |
|
|
|
214 |
gr.Markdown(
|
215 |
"""# AI Energy Score Leaderboard
|
216 |
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore)
|
217 |
+
Select different tasks to see scored models. Submit open models for testing and learn about testing proprietary models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)"""
|
|
|
|
|
|
|
218 |
)
|
219 |
|
220 |
with gr.Tabs():
|