Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -39,7 +39,7 @@ def make_link(mname):
|
|
39 |
display_name = parts[1] if len(parts) > 1 else mname
|
40 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
41 |
|
42 |
-
# --- Leaderboard Table Functions (
|
43 |
|
44 |
def create_minimal_bar_html(energy_value_wh, energy_score, max_energy_value):
|
45 |
"""Generates HTML for the minimal bar chart."""
|
@@ -49,12 +49,10 @@ def create_minimal_bar_html(energy_value_wh, energy_score, max_energy_value):
|
|
49 |
bar_percentage = min(100, (energy_value_wh / max_energy_value) * 100) # Cap at 100%
|
50 |
bar_color = color_map.get(str(energy_score), "gray") # Default color if score is unexpected
|
51 |
|
52 |
-
html = f"""
|
53 |
-
|
54 |
-
<
|
55 |
-
|
56 |
-
</div>
|
57 |
-
"""
|
58 |
return html
|
59 |
|
60 |
|
@@ -69,7 +67,7 @@ def get_model_names(task):
|
|
69 |
max_energy_for_task = df['total_gpu_energy'].max() # Calculate max energy for this task
|
70 |
|
71 |
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_task
|
72 |
-
df['GPU Energy (Wh)'] = df.apply(lambda row:
|
73 |
|
74 |
df['Model'] = df['model'].apply(make_link)
|
75 |
df['Score'] = df['energy_score'].apply(format_stars)
|
@@ -91,7 +89,7 @@ def get_all_model_names():
|
|
91 |
max_energy_overall = all_df['total_gpu_energy'].max() # Calculate overall max AFTER sorting
|
92 |
|
93 |
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_overall
|
94 |
-
all_df['GPU Energy (Wh)'] = all_df.apply(lambda row:
|
95 |
all_df['Model'] = all_df['model'].apply(make_link)
|
96 |
all_df['Score'] = all_df['energy_score'].apply(format_stars)
|
97 |
all_df = all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
@@ -111,7 +109,7 @@ def get_text_generation_model_names(model_class):
|
|
111 |
max_energy_for_class = df['total_gpu_energy'].max() # Calculate max energy for this class
|
112 |
|
113 |
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_class
|
114 |
-
df['GPU Energy (Wh)'] = df.apply(lambda row:
|
115 |
|
116 |
df['Model'] = df['model'].apply(make_link)
|
117 |
df['Score'] = df['energy_score'].apply(format_stars)
|
@@ -122,7 +120,7 @@ def update_text_generation(model_class):
|
|
122 |
table = get_text_generation_model_names(model_class)
|
123 |
return table
|
124 |
|
125 |
-
# --- Build the Gradio Interface (Plots Removed, Tables with Dynamic Bars using
|
126 |
|
127 |
demo = gr.Blocks(css="""
|
128 |
.gr-dataframe table {
|
@@ -135,17 +133,25 @@ demo = gr.Blocks(css="""
|
|
135 |
overflow: hidden;
|
136 |
text-overflow: ellipsis;
|
137 |
}
|
138 |
-
/* CSS for minimal bar chart inside table cell */
|
139 |
-
.minimal-bar-container {
|
140 |
display: flex;
|
141 |
align-items: center;
|
142 |
-
gap: 5px;
|
|
|
|
|
|
|
143 |
}
|
144 |
-
.minimal-bar {
|
145 |
height: 10px;
|
146 |
background-color: blue; /* default, will be overridden by dynamic color */
|
147 |
border-radius: 2px;
|
148 |
}
|
|
|
|
|
|
|
|
|
|
|
149 |
""")
|
150 |
|
151 |
with demo:
|
@@ -162,41 +168,41 @@ Select different tasks to see scored models. Submit open models for testing and
|
|
162 |
model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"],
|
163 |
label="Select Model Class",
|
164 |
value="A")
|
165 |
-
tg_table = gr.Dataframe(get_text_generation_model_names("A")) #
|
166 |
# Update table when the dropdown value changes
|
167 |
model_class_dropdown.change(fn=update_text_generation,
|
168 |
inputs=model_class_dropdown,
|
169 |
outputs=[tg_table])
|
170 |
|
171 |
with gr.TabItem("Image Generation 📷"):
|
172 |
-
table = gr.Dataframe(get_model_names('image_generation.csv')) #
|
173 |
|
174 |
with gr.TabItem("Text Classification 🎭"):
|
175 |
-
table = gr.Dataframe(get_model_names('text_classification.csv')) #
|
176 |
|
177 |
with gr.TabItem("Image Classification 🖼️"):
|
178 |
-
table = gr.Dataframe(get_model_names('image_classification.csv')) #
|
179 |
|
180 |
with gr.TabItem("Image Captioning 📝"):
|
181 |
-
table = gr.Dataframe(get_model_names('image_captioning.csv')) #
|
182 |
|
183 |
with gr.TabItem("Summarization 📃"):
|
184 |
-
table = gr.Dataframe(get_model_names('summarization.csv')) #
|
185 |
|
186 |
with gr.TabItem("Automatic Speech Recognition 💬"):
|
187 |
-
table = gr.Dataframe(get_model_names('asr.csv')) #
|
188 |
|
189 |
with gr.TabItem("Object Detection 🚘"):
|
190 |
-
table = gr.Dataframe(get_model_names('object_detection.csv')) #
|
191 |
|
192 |
with gr.TabItem("Sentence Similarity 📚"):
|
193 |
-
table = gr.Dataframe(get_model_names('sentence_similarity.csv')) #
|
194 |
|
195 |
with gr.TabItem("Extractive QA ❔"):
|
196 |
-
table = gr.Dataframe(get_model_names('question_answering.csv')) #
|
197 |
|
198 |
with gr.TabItem("All Tasks 💡"):
|
199 |
-
table = gr.Dataframe(get_all_model_names()) #
|
200 |
|
201 |
with gr.Accordion("📙 Citation", open=False):
|
202 |
citation_button = gr.Textbox(
|
@@ -210,4 +216,4 @@ Select different tasks to see scored models. Submit open models for testing and
|
|
210 |
"""Last updated: February 2025"""
|
211 |
)
|
212 |
|
213 |
-
demo.launch(share=True)
|
|
|
39 |
display_name = parts[1] if len(parts) > 1 else mname
|
40 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
41 |
|
42 |
+
# --- Leaderboard Table Functions (Back to datatype="markdown" approach) ---
|
43 |
|
44 |
def create_minimal_bar_html(energy_value_wh, energy_score, max_energy_value):
|
45 |
"""Generates HTML for the minimal bar chart."""
|
|
|
49 |
bar_percentage = min(100, (energy_value_wh / max_energy_value) * 100) # Cap at 100%
|
50 |
bar_color = color_map.get(str(energy_score), "gray") # Default color if score is unexpected
|
51 |
|
52 |
+
html = f"""<div class='minimal-bar-container'>
|
53 |
+
<div class='minimal-bar' style='width: {bar_percentage}%; background-color: {bar_color};'></div>
|
54 |
+
<span style='margin-left: 5px;'>{energy_value_wh:.4f} Wh</span>
|
55 |
+
</div>""" # Added classes and inline styles for better control
|
|
|
|
|
56 |
return html
|
57 |
|
58 |
|
|
|
67 |
max_energy_for_task = df['total_gpu_energy'].max() # Calculate max energy for this task
|
68 |
|
69 |
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_task
|
70 |
+
df['GPU Energy (Wh)'] = df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_for_task), axis=1)
|
71 |
|
72 |
df['Model'] = df['model'].apply(make_link)
|
73 |
df['Score'] = df['energy_score'].apply(format_stars)
|
|
|
89 |
max_energy_overall = all_df['total_gpu_energy'].max() # Calculate overall max AFTER sorting
|
90 |
|
91 |
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_overall
|
92 |
+
all_df['GPU Energy (Wh)'] = all_df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_overall), axis=1)
|
93 |
all_df['Model'] = all_df['model'].apply(make_link)
|
94 |
all_df['Score'] = all_df['energy_score'].apply(format_stars)
|
95 |
all_df = all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
|
|
109 |
max_energy_for_class = df['total_gpu_energy'].max() # Calculate max energy for this class
|
110 |
|
111 |
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_class
|
112 |
+
df['GPU Energy (Wh)'] = df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_for_class), axis=1)
|
113 |
|
114 |
df['Model'] = df['model'].apply(make_link)
|
115 |
df['Score'] = df['energy_score'].apply(format_stars)
|
|
|
120 |
table = get_text_generation_model_names(model_class)
|
121 |
return table
|
122 |
|
123 |
+
# --- Build the Gradio Interface (Plots Removed, Tables with Dynamic Bars using datatype="markdown") ---
|
124 |
|
125 |
demo = gr.Blocks(css="""
|
126 |
.gr-dataframe table {
|
|
|
133 |
overflow: hidden;
|
134 |
text-overflow: ellipsis;
|
135 |
}
|
136 |
+
/* CSS for minimal bar chart inside table cell - more specific CSS */
|
137 |
+
.gr-dataframe td > .minimal-bar-container { /* Target minimal-bar-container WITHIN dataframe cells */
|
138 |
display: flex;
|
139 |
align-items: center;
|
140 |
+
gap: 5px;
|
141 |
+
margin: 0; /* Reset margins */
|
142 |
+
padding: 0; /* Reset paddings */
|
143 |
+
line-height: normal; /* Reset line-height */
|
144 |
}
|
145 |
+
.gr-dataframe td > .minimal-bar-container > .minimal-bar { /* Target minimal-bar WITHIN container in dataframe cells */
|
146 |
height: 10px;
|
147 |
background-color: blue; /* default, will be overridden by dynamic color */
|
148 |
border-radius: 2px;
|
149 |
}
|
150 |
+
.gr-dataframe td > .minimal-bar-container > span { /* Target span for text value in dataframe cells */
|
151 |
+
font-size: 0.9em; /* Adjust text size if needed */
|
152 |
+
color: #333; /* Adjust text color if needed */
|
153 |
+
}
|
154 |
+
|
155 |
""")
|
156 |
|
157 |
with demo:
|
|
|
168 |
model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"],
|
169 |
label="Select Model Class",
|
170 |
value="A")
|
171 |
+
tg_table = gr.Dataframe(get_text_generation_model_names("A"), datatype="markdown") # IMPORTANT: datatype="markdown"
|
172 |
# Update table when the dropdown value changes
|
173 |
model_class_dropdown.change(fn=update_text_generation,
|
174 |
inputs=model_class_dropdown,
|
175 |
outputs=[tg_table])
|
176 |
|
177 |
with gr.TabItem("Image Generation 📷"):
|
178 |
+
table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown") # IMPORTANT: datatype="markdown"
|
179 |
|
180 |
with gr.TabItem("Text Classification 🎭"):
|
181 |
+
table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown") # IMPORTANT: datatype="markdown"
|
182 |
|
183 |
with gr.TabItem("Image Classification 🖼️"):
|
184 |
+
table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown") # IMPORTANT: datatype="markdown"
|
185 |
|
186 |
with gr.TabItem("Image Captioning 📝"):
|
187 |
+
table = gr.Dataframe(get_model_names('image_captioning.csv'), datatype="markdown") # IMPORTANT: datatype="markdown"
|
188 |
|
189 |
with gr.TabItem("Summarization 📃"):
|
190 |
+
table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown") # IMPORTANT: datatype="markdown"
|
191 |
|
192 |
with gr.TabItem("Automatic Speech Recognition 💬"):
|
193 |
+
table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown") # IMPORTANT: datatype="markdown"
|
194 |
|
195 |
with gr.TabItem("Object Detection 🚘"):
|
196 |
+
table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown") # IMPORTANT: datatype="markdown"
|
197 |
|
198 |
with gr.TabItem("Sentence Similarity 📚"):
|
199 |
+
table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown") # IMPORTANT: datatype="markdown"
|
200 |
|
201 |
with gr.TabItem("Extractive QA ❔"):
|
202 |
+
table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown") # IMPORTANT: datatype="markdown"
|
203 |
|
204 |
with gr.TabItem("All Tasks 💡"):
|
205 |
+
table = gr.Dataframe(get_all_model_names(), datatype="markdown") # IMPORTANT: datatype="markdown"
|
206 |
|
207 |
with gr.Accordion("📙 Citation", open=False):
|
208 |
citation_button = gr.Textbox(
|
|
|
216 |
"""Last updated: February 2025"""
|
217 |
)
|
218 |
|
219 |
+
demo.launch(share=True)
|