import gradio as gr import pandas as pd import plotly.express as px CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard, author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell}, title = {AI Energy Score Leaderboard - February 2025}, year = {2025}, publisher = {Hugging Face}, howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}", }""" # List of tasks (CSV filenames) tasks = [ 'asr.csv', 'object_detection.csv', 'text_classification.csv', 'image_captioning.csv', 'question_answering.csv', 'text_generation.csv', 'image_classification.csv', 'sentence_similarity.csv', 'image_generation.csv', 'summarization.csv' ] def format_stars(score): try: score_int = int(score) except Exception: score_int = 0 # Render stars in black with a slightly larger font return f'{"★" * score_int}' def make_link(mname): parts = str(mname).split('/') display_name = parts[1] if len(parts) > 1 else mname return f'[{display_name}](https://huggingface.co/{mname})' # --- Plot Functions (Bar Chart) --- def get_plots(task): df = pd.read_csv('data/energy/' + task) if df.columns[0].startswith("Unnamed:"): df = df.iloc[:, 1:] # Use the raw numeric value from the CSV for GPU Energy df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') df['energy_score'] = df['energy_score'].astype(int).astype(str) # Create a display model column for labeling df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1]) # Use the energy score to control color color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"} # Now plot as a bar chart fig = px.bar( df, x="Display Model", y="total_gpu_energy", color="energy_score", custom_data=['energy_score'], height=500, width=800, color_discrete_map=color_map ) # Update hover text to show the model and GPU Energy (with 4 decimals) fig.update_traces( hovertemplate="
".join([ "Model: %{x}", "GPU Energy (Wh): %{y:.4f}", "Energy Score: %{customdata[0]}" ]) ) fig.update_layout( xaxis_title="Model", yaxis_title="GPU Energy (Wh)", yaxis_tickformat=".4f", # Add this line to format y-axis ticks - might not be needed for bar chart yaxis = dict( tickformat=".4f" # Ensure tickformat is set within yaxis dict as well - might not be needed for bar chart ) ) return fig def get_all_plots(): all_df = pd.DataFrame() for task in tasks: df = pd.read_csv('data/energy/' + task) if df.columns[0].startswith("Unnamed:"): df = df.iloc[:, 1:] df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') df['energy_score'] = df['energy_score'].astype(int).astype(str) df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1]) all_df = pd.concat([all_df, df], ignore_index=True) all_df = all_df.drop_duplicates(subset=['model']) color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"} fig = px.bar( all_df, x="Display Model", y="total_gpu_energy", color="energy_score", custom_data=['energy_score'], height=500, width=800, color_discrete_map=color_map ) fig.update_traces( hovertemplate="
".join([ "Model: %{x}", "GPU Energy (Wh): %{y:.4f}", "Energy Score: %{customdata[0]}" ]) ) fig.update_layout( xaxis_title="Model", yaxis_title="GPU Energy (Wh)", yaxis_tickformat=".4f", # Add this line to format y-axis ticks - might not be needed for bar chart yaxis = dict( tickformat=".4f" # Ensure tickformat is set within yaxis dict as well - might not be needed for bar chart ) ) return fig # --- New functions for Text Generation filtering by model class (with Bar Chart) --- def get_text_generation_plots(model_class): df = pd.read_csv('data/energy/text_generation.csv') if df.columns[0].startswith("Unnamed:"): df = df.iloc[:, 1:] # Filter by the selected model class if the "class" column exists if 'class' in df.columns: df = df[df['class'] == model_class] df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') df['energy_score'] = df['energy_score'].astype(int).astype(str) df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1]) color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"} fig = px.bar( df, x="Display Model", y="total_gpu_energy", color="energy_score", custom_data=['energy_score'], height=500, width=800, color_discrete_map=color_map ) fig.update_traces( hovertemplate="
".join([ "Model: %{x}", "GPU Energy (Wh): %{y:.4f}", "Energy Score: %{customdata[0]}" ]) ) fig.update_layout( xaxis_title="Model", yaxis_title="GPU Energy (Wh)", yaxis_tickformat=".4f", # Add this line to format y-axis ticks - might not be needed for bar chart yaxis = dict( tickformat=".4f" # Ensure tickformat is set within yaxis dict as well - might not be needed for bar chart ) ) return fig # --- Leaderboard Table Functions and Gradio Interface are unchanged --- # (Keep the rest of the code same as previous response) def get_model_names(task): df = pd.read_csv('data/energy/' + task) if df.columns[0].startswith("Unnamed:"): df = df.iloc[:, 1:] df['energy_score'] = df['energy_score'].astype(int) # For leaderboard display, format GPU Energy to 4 decimals df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}") df['Model'] = df['model'].apply(make_link) df['Score'] = df['energy_score'].apply(format_stars) # Remove any Class column if it exists df = df[['Model', 'GPU Energy (Wh)', 'Score']] df = df.sort_values(by='GPU Energy (Wh)') return df def get_all_model_names(): all_df = pd.DataFrame() for task in tasks: df = pd.read_csv('data/energy/' + task) df['energy_score'] = df['energy_score'].astype(int) df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}") df['Model'] = df['model'].apply(make_link) df['Score'] = df['energy_score'].apply(format_stars) all_df = pd.concat([all_df, df], ignore_index=True) all_df = all_df.drop_duplicates(subset=['model']) all_df = all_df.sort_values(by='GPU Energy (Wh)') return all_df[['Model', 'GPU Energy (Wh)', 'Score']] def get_text_generation_model_names(model_class): df = pd.read_csv('data/energy/text_generation.csv') if df.columns[0].startswith("Unnamed:"): df = df.iloc[:, 1:] if 'class' in df.columns: df = df[df['class'] == model_class] df['energy_score'] = df['energy_score'].astype(int) df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}") df['Model'] = df['model'].apply(make_link) df['Score'] = df['energy_score'].apply(format_stars) # Remove the Class column if it exists df = df[['Model', 'GPU Energy (Wh)', 'Score']] df = df.sort_values(by='GPU Energy (Wh)') return df def update_text_generation(model_class): plot = get_text_generation_plots(model_class) table = get_text_generation_model_names(model_class) return plot, table # --- Build the Gradio Interface --- demo = gr.Blocks(css=""" .gr-dataframe table { table-layout: fixed; width: 100%; } .gr-dataframe th, .gr-dataframe td { max-width: 150px; white-space: nowrap; overflow: hidden; text-overflow: ellipsis; } """) with demo: gr.Markdown( """# AI Energy Score Leaderboard ### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore) Select different tasks to see scored models. Submit open models for testing and learn about testing proprietary models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)""" ) with gr.Tabs(): # --- Text Generation Tab with Dropdown for Model Class --- with gr.TabItem("Text Generation 💬"): # Dropdown moved above the plot and leaderboard model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"], label="Select Model Class", value="A") with gr.Row(): with gr.Column(scale=1.3): tg_plot = gr.Plot(get_text_generation_plots("A")) with gr.Column(scale=1): tg_table = gr.Dataframe(get_text_generation_model_names("A"), datatype="markdown") # Update plot and table when the dropdown value changes model_class_dropdown.change(fn=update_text_generation, inputs=model_class_dropdown, outputs=[tg_plot, tg_table]) with gr.TabItem("Image Generation 📷"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('image_generation.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown") with gr.TabItem("Text Classification 🎭"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('text_classification.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown") with gr.TabItem("Image Classification 🖼️"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('image_classification.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown") with gr.TabItem("Image Captioning 📝"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('image_captioning.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('image_captioning.csv'), datatype="markdown") with gr.TabItem("Summarization 📃"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('summarization.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown") with gr.TabItem("Automatic Speech Recognition 💬"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('asr.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown") with gr.TabItem("Object Detection 🚘"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('object_detection.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown") with gr.TabItem("Sentence Similarity 📚"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('sentence_similarity.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown") with gr.TabItem("Extractive QA ❔"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('question_answering.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown") with gr.TabItem("All Tasks 💡"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_all_plots()) with gr.Column(): table = gr.Dataframe(get_all_model_names(), datatype="markdown") with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id="citation-button", lines=10, show_copy_button=True, ) gr.Markdown( """Last updated: February 2025""" ) demo.launch()