import gradio as gr import pandas as pd CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard, author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell}, title = {AI Energy Score Leaderboard - February 2025}, year = {2025}, publisher = {Hugging Face}, howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}", }""" # List of tasks (CSV filenames) tasks = [ 'asr.csv', 'object_detection.csv', 'text_classification.csv', 'image_captioning.csv', 'question_answering.csv', 'text_generation.csv', 'image_classification.csv', 'sentence_similarity.csv', 'image_generation.csv', 'summarization.csv' ] def format_stars(score): try: score_int = int(score) except Exception: score_int = 0 # Render stars in black with a slightly larger font return f'{"★" * score_int}' def make_link(mname): parts = str(mname).split('/') display_name = parts[1] if len(parts) > 1 else mname return f'{display_name}' def generate_html_table_from_df(df): """ Given a dataframe that already includes: - 'gpu_energy_numeric': numeric energy (in Wh) - 'Model': the model link HTML, - 'Score': the HTML stars, - and 'energy_score' as an integer, generate an HTML table that shows the energy value plus a horizontal bar whose width is computed relative to the maximum energy. """ max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1 color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"} html = '' html += '' html += '' html += '' html += '' html += '' html += '' for _, row in df.iterrows(): energy_numeric = row['gpu_energy_numeric'] energy_str = f"{energy_numeric:.4f}" # Compute the relative width (as a percentage) for the horizontal bar bar_width = (energy_numeric / max_energy) * 100 score_val = row['energy_score'] bar_color = color_map.get(str(score_val), "gray") html += '' html += f'' html += ( f'' ) html += f'' html += '' html += '
ModelGPU Energy (Wh)Score
{row["Model"]}{energy_str}
' f'
{row["Score"]}
' return html def get_model_names_html(task): df = pd.read_csv('data/energy/' + task) if df.columns[0].startswith("Unnamed:"): df = df.iloc[:, 1:] # Convert energy_score to integer and total_gpu_energy from kWh to Wh df['energy_score'] = df['energy_score'].astype(int) df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 df['Model'] = df['model'].apply(make_link) df['Score'] = df['energy_score'].apply(format_stars) df = df.sort_values(by='gpu_energy_numeric') return generate_html_table_from_df(df) def get_all_model_names_html(): all_df = pd.DataFrame() for task in tasks: df = pd.read_csv('data/energy/' + task) if df.columns[0].startswith("Unnamed:"): df = df.iloc[:, 1:] df['energy_score'] = df['energy_score'].astype(int) df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 df['Model'] = df['model'].apply(make_link) df['Score'] = df['energy_score'].apply(format_stars) all_df = pd.concat([all_df, df], ignore_index=True) all_df = all_df.drop_duplicates(subset=['model']) all_df = all_df.sort_values(by='gpu_energy_numeric') return generate_html_table_from_df(all_df) def get_text_generation_model_names_html(model_class): df = pd.read_csv('data/energy/text_generation.csv') if df.columns[0].startswith("Unnamed:"): df = df.iloc[:, 1:] if 'class' in df.columns: df = df[df['class'] == model_class] df['energy_score'] = df['energy_score'].astype(int) df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 df['Model'] = df['model'].apply(make_link) df['Score'] = df['energy_score'].apply(format_stars) df = df.sort_values(by='gpu_energy_numeric') return generate_html_table_from_df(df) def update_text_generation(model_class): table_html = get_text_generation_model_names_html(model_class) return table_html # --- Build the Gradio Interface --- demo = gr.Blocks(css=""" .gr-dataframe table { table-layout: fixed; width: 100%; } .gr-dataframe th, .gr-dataframe td { max-width: 150px; white-space: nowrap; overflow: hidden; text-overflow: ellipsis; } """) with demo: gr.Markdown( """# AI Energy Score Leaderboard ### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore) Select different tasks to see scored models. Submit open models for testing and learn about testing proprietary models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)""" ) with gr.Tabs(): # --- Text Generation Tab with Dropdown for Model Class --- with gr.TabItem("Text Generation 💬"): model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"], label="Select Model Class", value="A") tg_table = gr.HTML(get_text_generation_model_names_html("A")) model_class_dropdown.change(fn=update_text_generation, inputs=model_class_dropdown, outputs=tg_table) with gr.TabItem("Image Generation 📷"): gr.HTML(get_model_names_html('image_generation.csv')) with gr.TabItem("Text Classification 🎭"): gr.HTML(get_model_names_html('text_classification.csv')) with gr.TabItem("Image Classification 🖼️"): gr.HTML(get_model_names_html('image_classification.csv')) with gr.TabItem("Image Captioning 📝"): gr.HTML(get_model_names_html('image_captioning.csv')) with gr.TabItem("Summarization 📃"): gr.HTML(get_model_names_html('summarization.csv')) with gr.TabItem("Automatic Speech Recognition 💬"): gr.HTML(get_model_names_html('asr.csv')) with gr.TabItem("Object Detection 🚘"): gr.HTML(get_model_names_html('object_detection.csv')) with gr.TabItem("Sentence Similarity 📚"): gr.HTML(get_model_names_html('sentence_similarity.csv')) with gr.TabItem("Extractive QA ❔"): gr.HTML(get_model_names_html('question_answering.csv')) with gr.TabItem("All Tasks 💡"): gr.HTML(get_all_model_names_html()) with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id="citation-button", lines=10, show_copy_button=True, ) gr.Markdown( """Last updated: February 2025""" ) demo.launch()