import gradio as gr import pandas as pd import os import zipfile import base64 CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard, author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell}, title = {AI Energy Score Leaderboard - February 2025}, year = {2025}, publisher = {Hugging Face}, howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}", }""" # List of tasks (CSV filenames) tasks = [ 'asr.csv', 'object_detection.csv', 'text_classification.csv', 'image_captioning.csv', 'question_answering.csv', 'text_generation.csv', 'image_classification.csv', 'sentence_similarity.csv', 'image_generation.csv', 'summarization.csv' ] def format_stars(score): try: score_int = int(score) except Exception: score_int = 0 return f'{"★" * score_int}' def make_link(mname): parts = str(mname).split('/') display_name = parts[1] if len(parts) > 1 else mname return f'{display_name}' def generate_html_table_from_df(df): """ Generates an HTML table with tooltips for column headers. """ max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1 color_map = {"1": "black", "2": "black", "3": "black", "4": "black", "5": "black"} html = '' html += '' html += '' html += '' html += '' html += '' html += '' for _, row in df.iterrows(): energy_numeric = row['gpu_energy_numeric'] energy_str = f"{energy_numeric:.2f}" # Display GPU energy with 2 decimal places bar_width = (energy_numeric / max_energy) * 100 score_val = row['energy_score'] bar_color = color_map.get(str(score_val), "gray") html += '' html += f'' html += f'' html += f'' html += '' html += '
ModelGPU Energy (Wh)Score
{row["Model"]}{energy_str}
' html += f'
{row["Score"]}
' return html def get_model_names_html(task, sort_order="Low to High"): df = pd.read_csv('data/energy/' + task) if df.columns[0].startswith("Unnamed:"): df = df.iloc[:, 1:] df['energy_score'] = df['energy_score'].astype(int) df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 df['Model'] = df['model'].apply(make_link) df['Score'] = df['energy_score'].apply(format_stars) ascending = True # Always default to Low to High df = df.sort_values(by='gpu_energy_numeric', ascending=ascending) return generate_html_table_from_df(df) def update_all_tasks(sort_order): return get_all_model_names_html(sort_order) def get_all_model_names_html(sort_order="Low to High"): all_df = pd.DataFrame() for task in tasks: df = pd.read_csv('data/energy/' + task) if df.columns[0].startswith("Unnamed:"): df = df.iloc[:, 1:] df['energy_score'] = df['energy_score'].astype(int) df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 df['Model'] = df['model'].apply(make_link) df['Score'] = df['energy_score'].apply(format_stars) all_df = pd.concat([all_df, df], ignore_index=True) all_df = all_df.drop_duplicates(subset=['model']) ascending = True # Default to Low to High all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending) return generate_html_table_from_df(all_df) # --- Build the Gradio Interface --- demo = gr.Blocks(css=""" .gr-dataframe table { table-layout: fixed; width: 100%; } .gr-dataframe th, .gr-dataframe td { max-width: 150px; white-space: nowrap; overflow: hidden; text-overflow: ellipsis; } """) with demo: gr.HTML('
Logo
') gr.Markdown('
Welcome to the AI Energy Score Leaderboard
', unsafe_allow_html=True) with gr.Tabs(): with gr.TabItem("All Tasks 💡"): sort_dropdown_all = gr.Dropdown( choices=["Low to High", "High to Low"], label="Sort", value="Low to High" ) all_table = gr.HTML(get_all_model_names_html("Low to High")) sort_dropdown_all.change(fn=update_all_tasks, inputs=sort_dropdown_all, outputs=all_table) with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id="citation-button", lines=10, show_copy_button=True, ) gr.Markdown("""Last updated: February 2025""") demo.launch()