File size: 15,613 Bytes
906c9b0
c02513c
 
 
 
 
 
 
3ea3100
c02513c
3ea3100
 
 
 
 
3690a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02513c
3ffa6ad
3690a76
c02513c
3ffa6ad
c02513c
3690a76
 
 
 
 
c02513c
 
 
 
 
 
 
 
 
3690a76
 
c02513c
 
 
3ea3100
3690a76
 
c02513c
 
 
 
 
3690a76
 
 
 
 
 
 
 
 
 
 
 
 
 
c02513c
3690a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02513c
3ea3100
 
 
3690a76
 
3ea3100
 
 
3690a76
 
 
 
 
 
 
 
 
 
 
 
3ea3100
3690a76
3ea3100
 
 
 
 
 
 
 
 
3690a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ea3100
 
c02513c
3ea3100
 
 
 
 
 
3690a76
 
 
3ea3100
 
 
 
3690a76
 
 
 
3ea3100
 
 
3690a76
 
 
 
 
3ea3100
 
 
 
 
3690a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ea3100
 
c02513c
3ea3100
 
 
 
 
 
 
3690a76
 
 
 
3ea3100
3690a76
c02513c
3ea3100
3690a76
 
 
 
 
 
3ea3100
3690a76
 
 
 
 
3ea3100
 
 
3690a76
 
 
 
3ea3100
 
c02513c
3ea3100
 
 
 
3690a76
 
 
 
3ea3100
 
3690a76
3ea3100
 
 
 
3690a76
 
 
3ea3100
 
3690a76
 
 
3ea3100
 
 
 
 
3690a76
 
 
3ea3100
 
3690a76
 
 
3ea3100
 
3690a76
 
 
3ea3100
 
3690a76
 
3ea3100
3690a76
 
3ea3100
 
 
 
3690a76
 
 
 
 
 
 
3ea3100
 
3690a76
 
 
 
3ea3100
 
 
 
 
 
3690a76
 
 
 
 
 
 
 
 
 
 
 
3ea3100
 
3690a76
 
 
 
3ea3100
3690a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e897bc2
3ea3100
3690a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e897bc2
3ea3100
3690a76
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import gradio as gr
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision import models
from transformers import BertTokenizer, BertModel
import pandas as pd
from datasets import load_dataset
from torch.utils.data import DataLoader, Dataset, random_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
import os
import logging

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('model_training.log'),
        logging.StreamHandler()
    ]
)

# Create output directory for results
os.makedirs('output', exist_ok=True)

# Load dataset and filter out null/none values
logging.info("Loading and filtering dataset...")
dataset = load_dataset('thefcraft/civitai-stable-diffusion-337k', split='train[:10000]')
dataset = dataset.filter(lambda example: example['Model'] is not None and example['Model'].strip() != '')

if len(dataset) == 0:
    raise ValueError("Dataset is empty after filtering!")

logging.info(f"Dataset size after filtering: {len(dataset)}")

# Preprocess text data
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

class CustomDataset(Dataset):
    def __init__(self, dataset):
        self.dataset = dataset
        self.transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                               std=[0.229, 0.224, 0.225])
        ])
        self.label_encoder = LabelEncoder()
        self.labels = self.label_encoder.fit_transform(dataset['Model'])
        self.unique_models = self.label_encoder.classes_
        
        logging.info(f"Number of unique models: {len(self.unique_models)}")

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        try:
            image = self.transform(self.dataset[idx]['image'])
            text = tokenizer(
                self.dataset[idx]['prompt'],
                padding='max_length',
                truncation=True,
                max_length=512,
                return_tensors='pt'
            )
            label = self.labels[idx]
            return image, text, label
        except Exception as e:
            logging.error(f"Error processing item {idx}: {str(e)}")
            raise

class ImageModel(nn.Module):
    def __init__(self):
        super(ImageModel, self).__init__()
        self.model = models.resnet18(pretrained=True)
        self.model.fc = nn.Linear(self.model.fc.in_features, 512)
        
    def forward(self, x):
        x = self.model(x)
        return nn.functional.relu(x)

class TextModel(nn.Module):
    def __init__(self):
        super(TextModel, self).__init__()
        self.bert = BertModel.from_pretrained('bert-base-uncased')
        self.fc = nn.Linear(768, 512)
        
    def forward(self, x):
        outputs = self.bert(**x)
        x = outputs.pooler_output
        x = self.fc(x)
        return nn.functional.relu(x)

class CombinedModel(nn.Module):
    def __init__(self, num_classes):
        super(CombinedModel, self).__init__()
        self.image_model = ImageModel()
        self.text_model = TextModel()
        self.dropout = nn.Dropout(0.2)
        self.fc = nn.Linear(1024, num_classes)
        
    def forward(self, image, text):
        image_features = self.image_model(image)
        text_features = self.text_model(text)
        combined = torch.cat((image_features, text_features), dim=1)
        combined = self.dropout(combined)
        return self.fc(combined)

class ModelTrainerEvaluator:
    def __init__(self, model, dataset, batch_size=32, learning_rate=0.001):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        logging.info(f"Using device: {self.device}")
        
        self.model = model.to(self.device)
        self.batch_size = batch_size
        self.criterion = nn.CrossEntropyLoss()
        self.optimizer = torch.optim.AdamW(
            model.parameters(),
            lr=learning_rate,
            weight_decay=0.01
        )
        self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
            self.optimizer,
            mode='min',
            factor=0.1,
            patience=2,
            verbose=True
        )
        
        # Split dataset
        total_size = len(dataset)
        train_size = int(0.7 * total_size)
        val_size = int(0.15 * total_size)
        test_size = total_size - train_size - val_size
        
        train_dataset, val_dataset, test_dataset = random_split(
            dataset, [train_size, val_size, test_size]
        )
        
        self.train_loader = DataLoader(
            train_dataset,
            batch_size=batch_size,
            shuffle=True,
            num_workers=4
        )
        self.val_loader = DataLoader(
            val_dataset,
            batch_size=batch_size,
            num_workers=4
        )
        self.test_loader = DataLoader(
            test_dataset,
            batch_size=batch_size,
            num_workers=4
        )
        
        self.unique_models = dataset.unique_models

    def train_epoch(self):
        self.model.train()
        total_loss = 0
        predictions = []
        actual_labels = []
        
        progress_bar = tqdm(self.train_loader, desc="Training")
        for batch_idx, batch in enumerate(progress_bar):
            try:
                images, texts, labels = batch
                images = images.to(self.device)
                labels = labels.to(self.device)
                
                # Move text tensors to device
                texts = {k: v.squeeze(1).to(self.device) for k, v in texts.items()}
                
                self.optimizer.zero_grad()
                outputs = self.model(images, texts)
                loss = self.criterion(outputs, labels)
                
                loss.backward()
                # Gradient clipping
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
                self.optimizer.step()
                
                total_loss += loss.item()
                
                _, preds = torch.max(outputs, 1)
                predictions.extend(preds.cpu().numpy())
                actual_labels.extend(labels.cpu().numpy())
                
                # Update progress bar
                progress_bar.set_postfix({
                    'loss': f'{loss.item():.4f}',
                    'avg_loss': f'{total_loss/(batch_idx+1):.4f}'
                })
                
            except Exception as e:
                logging.error(f"Error in batch {batch_idx}: {str(e)}")
                continue
        
        return total_loss / len(self.train_loader), predictions, actual_labels

    def evaluate(self, loader, mode="Validation"):
        self.model.eval()
        total_loss = 0
        predictions = []
        actual_labels = []
        
        with torch.no_grad():
            progress_bar = tqdm(loader, desc=mode)
            for batch_idx, batch in enumerate(progress_bar):
                try:
                    images, texts, labels = batch
                    images = images.to(self.device)
                    labels = labels.to(self.device)
                    texts = {k: v.squeeze(1).to(self.device) for k, v in texts.items()}
                    
                    outputs = self.model(images, texts)
                    loss = self.criterion(outputs, labels)
                    
                    total_loss += loss.item()
                    
                    _, preds = torch.max(outputs, 1)
                    predictions.extend(preds.cpu().numpy())
                    actual_labels.extend(labels.cpu().numpy())
                    
                    progress_bar.set_postfix({
                        'loss': f'{loss.item():.4f}',
                        'avg_loss': f'{total_loss/(batch_idx+1):.4f}'
                    })
                    
                except Exception as e:
                    logging.error(f"Error in {mode} batch {batch_idx}: {str(e)}")
                    continue
        
        return total_loss / len(loader), predictions, actual_labels

    def plot_confusion_matrix(self, y_true, y_pred, title):
        cm = confusion_matrix(y_true, y_pred)
        plt.figure(figsize=(15, 15))
        sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
        plt.title(title)
        plt.ylabel('True Label')
        plt.xlabel('Predicted Label')
        
        # Save plot
        filename = f'output/{title.lower().replace(" ", "_")}.png'
        plt.savefig(filename)
        plt.close()
        logging.info(f"Saved confusion matrix to {filename}")

    def generate_evaluation_report(self, y_true, y_pred, title):
        report = classification_report(
            y_true,
            y_pred,
            target_names=self.unique_models,
            output_dict=True
        )
        df_report = pd.DataFrame(report).transpose()
        
        # Save report
        filename = f'output/{title.lower().replace(" ", "_")}_report.csv'
        df_report.to_csv(filename)
        logging.info(f"Saved classification report to {filename}")
        
        accuracy = accuracy_score(y_true, y_pred)
        
        logging.info(f"\n{title} Results:")
        logging.info(f"Accuracy: {accuracy:.4f}")
        logging.info("\nClassification Report:")
        logging.info("\n" + classification_report(y_true, y_pred, target_names=self.unique_models))
        
        return accuracy, df_report

    def train_and_evaluate(self, num_epochs=5):
        best_val_loss = float('inf')
        train_accuracies = []
        val_accuracies = []
        train_losses = []
        val_losses = []
        
        logging.info(f"Starting training for {num_epochs} epochs...")
        
        for epoch in range(num_epochs):
            logging.info(f"\nEpoch {epoch+1}/{num_epochs}")
            
            # Training
            train_loss, train_preds, train_labels = self.train_epoch()
            train_accuracy, _ = self.generate_evaluation_report(
                train_labels,
                train_preds,
                f"Training_Epoch_{epoch+1}"
            )
            self.plot_confusion_matrix(
                train_labels,
                train_preds,
                f"Training_Confusion_Matrix_Epoch_{epoch+1}"
            )
            
            # Validation
            val_loss, val_preds, val_labels = self.evaluate(self.val_loader)
            val_accuracy, _ = self.generate_evaluation_report(
                val_labels,
                val_preds,
                f"Validation_Epoch_{epoch+1}"
            )
            self.plot_confusion_matrix(
                val_labels,
                val_preds,
                f"Validation_Confusion_Matrix_Epoch_{epoch+1}"
            )
            
            # Update learning rate scheduler
            self.scheduler.step(val_loss)
            
            train_accuracies.append(train_accuracy)
            val_accuracies.append(val_accuracy)
            train_losses.append(train_loss)
            val_losses.append(val_loss)
            
            logging.info(f"\nTraining Loss: {train_loss:.4f}")
            logging.info(f"Validation Loss: {val_loss:.4f}")
            
            # Save best model
            if val_loss < best_val_loss:
                best_val_loss = val_loss
                torch.save({
                    'epoch': epoch,
                    'model_state_dict': self.model.state_dict(),
                    'optimizer_state_dict': self.optimizer.state_dict(),
                    'val_loss': val_loss,
                }, 'output/best_model.pth')
                logging.info(f"Saved new best model with validation loss: {val_loss:.4f}")
        
        # Plot training history
        plt.figure(figsize=(12, 4))
        
        # Plot accuracies
        plt.subplot(1, 2, 1)
        plt.plot(train_accuracies, label='Training Accuracy')
        plt.plot(val_accuracies, label='Validation Accuracy')
        plt.title('Model Accuracy over Epochs')
        plt.xlabel('Epoch')
        plt.ylabel('Accuracy')
        plt.legend()
        
        # Plot losses
        plt.subplot(1, 2, 2)
        plt.plot(train_losses, label='Training Loss')
        plt.plot(val_losses, label='Validation Loss')
        plt.title('Model Loss over Epochs')
        plt.xlabel('Epoch')
        plt.ylabel('Loss')
        plt.legend()
        
        plt.tight_layout()
        plt.savefig('output/training_history.png')
        plt.close()
        
        # Final test evaluation using best model
        logging.info("\nPerforming final evaluation on test set...")
        checkpoint = torch.load('output/best_model.pth')
        self.model.load_state_dict(checkpoint['model_state_dict'])
        test_loss, test_preds, test_labels = self.evaluate(self.test_loader, "Test")
        self.generate_evaluation_report(test_labels, test_preds, "Final_Test")
        self.plot_confusion_matrix(test_labels, test_preds, "Final_Test_Confusion_Matrix")

def predict(image):
    model.eval()
    with torch.no_grad():
        image = transforms.ToTensor()(image).unsqueeze(0)
        image = transforms.Resize((224, 224))(image)
        text_input = tokenizer(
            "Sample prompt",
            return_tensors='pt',
            padding=True,
            truncation=True
        )
        output = model(image, text_input)
        _, indices = torch.topk(output, 5)
        recommended_models = [dataset['Model'][i] for i in indices[0]]
    return recommended_models

def main():
    try:
        # Create dataset
        logging.info("Creating custom dataset...")
        custom_dataset = CustomDataset(dataset)
        
        # Create model
        logging.info("Initializing model...")
        model = CombinedModel(num_classes=len(custom_dataset.unique_models))
        
        # Create trainer/evaluator
        logging.info("Setting up trainer/evaluator...")
        trainer = ModelTrainerEvaluator(
            model=model,
            dataset=custom_dataset,
            batch_size=32,
            learning_rate=0.001
        )
        
        # Train and evaluate
        logging.info("Starting training process...")
        trainer.train_and_evaluate(num_epochs=5)
        
        # Create Gradio interface
        logging.info("Setting up Gradio interface...")
        interface = gr.Interface(
            fn=predict,
            inputs=gr.Image(type="pil"),
            outputs=gr.Textbox(label="Recommended Models"),
            title="AI Image Model Recommender",
            description="Upload an AI-generated image to receive model recommendations.",
            examples=[
                ["example_image1.jpg"],
                ["example_image2.jpg"]
            ],
            analytics_enabled=False
        )
        
        # Launch the interface
        logging.info("Launching Gradio interface...")
        interface.launch(share=True)
        
    except Exception as e:
        logging.error(f"Error in main function: {str(e)}")
        raise

if __name__ == "__main__":
    try:
        main()
    except KeyboardInterrupt:
        logging.info("Process interrupted by user")
    except Exception as e:
        logging.error(f"Fatal error: {str(e)}")
        raise