Update app.py
Browse files
app.py
CHANGED
@@ -8,9 +8,12 @@ import pandas as pd
|
|
8 |
from datasets import load_dataset
|
9 |
from torch.utils.data import DataLoader, Dataset
|
10 |
from sklearn.preprocessing import LabelEncoder
|
|
|
|
|
|
|
11 |
|
12 |
# Load dataset
|
13 |
-
dataset = load_dataset('thefcraft/civitai-stable-diffusion-337k', split='train[:
|
14 |
|
15 |
# Preprocess text data
|
16 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
@@ -72,7 +75,19 @@ class CombinedModel(nn.Module):
|
|
72 |
# Instantiate model
|
73 |
model = CombinedModel()
|
74 |
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
def predict(image):
|
77 |
model.eval()
|
78 |
with torch.no_grad():
|
@@ -80,16 +95,15 @@ def predict(image):
|
|
80 |
image = transforms.Resize((224, 224))(image)
|
81 |
text_input = tokenizer("Sample prompt", return_tensors='pt', padding=True, truncation=True)
|
82 |
output = model(image, text_input)
|
83 |
-
|
84 |
-
recommended_models = [dataset['Model'][i] for i in indices
|
85 |
-
|
|
|
86 |
|
87 |
-
# Set up Gradio interface
|
88 |
interface = gr.Interface(fn=predict,
|
89 |
-
inputs=gr.
|
90 |
-
outputs=gr.
|
91 |
title="AI Image Model Recommender",
|
92 |
description="Upload an AI-generated image to receive model recommendations.")
|
93 |
|
94 |
-
# Launch the app
|
95 |
interface.launch()
|
|
|
8 |
from datasets import load_dataset
|
9 |
from torch.utils.data import DataLoader, Dataset
|
10 |
from sklearn.preprocessing import LabelEncoder
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
from PIL import Image
|
13 |
+
import io
|
14 |
|
15 |
# Load dataset
|
16 |
+
dataset = load_dataset('thefcraft/civitai-stable-diffusion-337k', split='train[:1000]')
|
17 |
|
18 |
# Preprocess text data
|
19 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
|
75 |
# Instantiate model
|
76 |
model = CombinedModel()
|
77 |
|
78 |
+
def display_recommendations(image, recommended_models, distances):
|
79 |
+
fig, axes = plt.subplots(1, len(recommended_models), figsize=(16, 4))
|
80 |
+
fig.suptitle("Recommended Models")
|
81 |
+
|
82 |
+
for i, (model, distance) in enumerate(zip(recommended_models, distances)):
|
83 |
+
# Load and display the recommended model image
|
84 |
+
model_image = Image.open(io.BytesIO(dataset.get_example(model)['image']))
|
85 |
+
axes[i].imshow(model_image)
|
86 |
+
axes[i].axis('off')
|
87 |
+
axes[i].set_title(f"{model}\nDistance: {distance:.2f}")
|
88 |
+
|
89 |
+
return fig
|
90 |
+
|
91 |
def predict(image):
|
92 |
model.eval()
|
93 |
with torch.no_grad():
|
|
|
95 |
image = transforms.Resize((224, 224))(image)
|
96 |
text_input = tokenizer("Sample prompt", return_tensors='pt', padding=True, truncation=True)
|
97 |
output = model(image, text_input)
|
98 |
+
distances, indices = torch.topk(-output.squeeze(), 5)
|
99 |
+
recommended_models = [dataset['Model'][i] for i in indices]
|
100 |
+
distances = (-distances).tolist()
|
101 |
+
return display_recommendations(image, recommended_models, distances)
|
102 |
|
|
|
103 |
interface = gr.Interface(fn=predict,
|
104 |
+
inputs=gr.Image(type="pil"),
|
105 |
+
outputs=gr.Plot(),
|
106 |
title="AI Image Model Recommender",
|
107 |
description="Upload an AI-generated image to receive model recommendations.")
|
108 |
|
|
|
109 |
interface.launch()
|