File size: 9,033 Bytes
935a747
 
 
 
 
 
 
 
 
 
 
bd1b634
935a747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1b634
 
 
935a747
bd1b634
935a747
bd1b634
 
935a747
 
 
 
 
 
 
 
bd1b634
935a747
 
 
154e0bd
c453f9a
bd1b634
c453f9a
 
 
bd1b634
c453f9a
bd1b634
c453f9a
154e0bd
935a747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c453f9a
935a747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154e0bd
935a747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154e0bd
 
935a747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# app.py
import gradio as gr
import torch
import numpy as np
from PIL import Image
from torch import nn
import torch.nn.functional as F
from datasets import load_dataset
from torch.utils.data import Dataset, DataLoader
import os
from tqdm import tqdm
from transformers import AutoProcessor, AutoModelForCausalLM

class SDDataset(Dataset):
    def __init__(self, dataset, processor, model_to_idx, token_to_idx, max_samples=5000):
        self.dataset = dataset.select(range(min(max_samples, len(dataset))))
        self.processor = processor
        self.model_to_idx = model_to_idx
        self.token_to_idx = token_to_idx
        
    def __len__(self):
        return len(self.dataset)
    
    def __getitem__(self, idx):
        item = self.dataset[idx]
        
        # Process image
        image = Image.open(item['image'])
        image_inputs = self.processor(images=image, return_tensors="pt")
        
        # Create model label
        model_label = torch.zeros(len(self.model_to_idx))
        model_label[self.model_to_idx[item['model_name']]] = 1
        
        # Create prompt label (multi-hot encoding)
        prompt_label = torch.zeros(len(self.token_to_idx))
        for token in item['prompt'].split():
            if token in self.token_to_idx:
                prompt_label[self.token_to_idx[token]] = 1
                
        return image_inputs, model_label, prompt_label

class SDRecommenderModel(nn.Module):
    def __init__(self, florence_model, num_models, vocab_size):
        super().__init__()
        self.florence = florence_model
        hidden_size = 1024  # Florence-2-large hidden size
        self.model_head = nn.Linear(hidden_size, num_models)
        self.prompt_head = nn.Linear(hidden_size, vocab_size)
        
    def forward(self, pixel_values):
        # Get Florence embeddings
        outputs = self.florence(pixel_values=pixel_values, output_hidden_states=True)
        features = outputs.hidden_states[-1].mean(dim=1)  # Use mean pooling of last hidden state
        
        # Generate model and prompt recommendations
        model_logits = self.model_head(features)
        prompt_logits = self.prompt_head(features)
        
        return model_logits, prompt_logits

class SDRecommender:
    def __init__(self, max_samples=500):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"Using device: {self.device}")
        
        # Load Florence model and processor
        print("Loading Florence model and processor...")
        self.processor = AutoProcessor.from_pretrained(
            "microsoft/Florence-2-large",
            trust_remote_code=True
        )
        self.florence = AutoModelForCausalLM.from_pretrained(
            "microsoft/Florence-2-large",
            torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
            trust_remote_code=True
        ).to(self.device)
        
        # Load dataset
        print("Loading dataset...")
        self.dataset = load_dataset("thefcraft/civitai-stable-diffusion-337k", split="train")
        self.dataset = self.dataset.select(range(min(max_samples, len(self.dataset))))
        print(f"Using {len(self.dataset)} samples from dataset")
        
        # Create vocabularies for models and tokens
        self.model_to_idx = self._create_model_vocab()
        self.token_to_idx = self._create_prompt_vocab()
        
        # Initialize the recommendation model
        self.model = SDRecommenderModel(
            self.florence,
            len(self.model_to_idx),
            len(self.token_to_idx)
        ).to(self.device)
        
        # Load trained weights if available
        if os.path.exists("recommender_model.pth"):
            self.model.load_state_dict(torch.load("recommender_model.pth", map_location=self.device))
            print("Loaded trained model weights")
        self.model.eval()
        
    def _create_model_vocab(self):
        print("Creating model vocabulary...")
        models = set()
        for item in self.dataset:
            models.add(item["model_name"])
        return {model: idx for idx, model in enumerate(sorted(models))}
    
    def _create_prompt_vocab(self):
        print("Creating prompt vocabulary...")
        tokens = set()
        for item in self.dataset:
            for token in item["prompt"].split():
                tokens.add(token)
        return {token: idx for idx, token in enumerate(sorted(tokens))}
    
    def train(self, num_epochs=5, batch_size=8, learning_rate=1e-4):
        print("Starting training...")
        
        # Create dataset and dataloader
        train_dataset = SDDataset(
            self.dataset,
            self.processor,
            self.model_to_idx,
            self.token_to_idx
        )
        train_loader = DataLoader(
            train_dataset,
            batch_size=batch_size,
            shuffle=True,
            num_workers=2
        )
        
        # Setup optimizer
        optimizer = torch.optim.AdamW(self.model.parameters(), lr=learning_rate)
        
        # Training loop
        self.model.train()
        for epoch in range(num_epochs):
            total_loss = 0
            progress_bar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{num_epochs}")
            
            for batch_idx, (images, model_labels, prompt_labels) in enumerate(progress_bar):
                # Move everything to device
                images = {k: v.to(self.device) for k, v in images.items()}
                model_labels = model_labels.to(self.device)
                prompt_labels = prompt_labels.to(self.device)
                
                # Forward pass
                model_logits, prompt_logits = self.model(images)
                
                # Calculate loss
                model_loss = F.cross_entropy(model_logits, model_labels)
                prompt_loss = F.binary_cross_entropy_with_logits(prompt_logits, prompt_labels)
                loss = model_loss + prompt_loss
                
                # Backward pass
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                
                # Update progress
                total_loss += loss.item()
                progress_bar.set_postfix({"loss": total_loss / (batch_idx + 1)})
        
        # Save trained model
        torch.save(self.model.state_dict(), "recommender_model.pth")
        print("Training completed and model saved")
    
    def get_recommendations(self, image):
        # Convert uploaded image to PIL if needed
        if not isinstance(image, Image.Image):
            image = Image.open(image)
        
        # Process image
        inputs = self.processor(images=image, return_tensors="pt")
        inputs = {k: v.to(self.device) for k, v in inputs.items()}
        
        # Get model predictions
        self.model.eval()
        with torch.no_grad():
            model_logits, prompt_logits = self.model(inputs)
            
            # Get top 5 model recommendations
            model_probs = F.softmax(model_logits, dim=-1)
            top_models = torch.topk(model_probs, k=5)
            model_recommendations = [
                (list(self.model_to_idx.keys())[idx.item()], prob.item())
                for prob, idx in zip(top_models.values[0], top_models.indices[0])
            ]
            
            # Get top tokens for prompt recommendations
            prompt_probs = F.softmax(prompt_logits, dim=-1)
            top_tokens = torch.topk(prompt_probs, k=20)
            recommended_tokens = [
                list(self.token_to_idx.keys())[idx.item()]
                for idx in top_tokens.indices[0]
            ]
            
            # Create 5 prompt combinations
            prompt_recommendations = [
                " ".join(np.random.choice(recommended_tokens, size=8, replace=False))
                for _ in range(5)
            ]
            
        return (
            "\n".join(f"{model} (confidence: {conf:.2f})" for model, conf in model_recommendations),
            "\n".join(prompt_recommendations)
        )

# Create Gradio interface
def create_interface():
    recommender = SDRecommender(max_samples=5000)
    
    # Train the model if no trained weights exist
    if not os.path.exists("recommender_model.pth"):
        recommender.train()
    
    def process_image(image):
        model_recs, prompt_recs = recommender.get_recommendations(image)
        return model_recs, prompt_recs
    
    interface = gr.Interface(
        fn=process_image,
        inputs=gr.Image(type="pil"),
        outputs=[
            gr.Textbox(label="Recommended Models"),
            gr.Textbox(label="Recommended Prompts")
        ],
        title="Stable Diffusion Model & Prompt Recommender",
        description="Upload an AI-generated image to get model and prompt recommendations",
    )
    
    return interface

# Launch the interface
if __name__ == "__main__":
    interface = create_interface()
    interface.launch()