File size: 5,429 Bytes
30b7bc6
d19c70c
4dccf1d
 
 
 
 
892f774
f50f18c
5fef682
4dccf1d
30b7bc6
 
 
 
f50f18c
30b7bc6
f50f18c
4dccf1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f50f18c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dccf1d
 
 
 
 
 
d19c70c
4dccf1d
 
 
 
 
 
 
 
 
 
1f1720f
5fef682
4dccf1d
 
 
 
 
 
 
 
5fef682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
892f774
 
 
5fef682
 
892f774
 
 
 
 
 
5fef682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import logging
from sqlalchemy import create_engine, Column, Integer, String, DateTime
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker, Session
from datetime import datetime
import pandas as pd
import numpy as np
from datasets import load_dataset
from rating_systems import compute_elo, compute_bootstrap_elo, get_median_elo_from_bootstrap

def is_running_in_space():
    return "SPACE_ID" in os.environ

if is_running_in_space():
    DATABASE_URL = "sqlite:///./data/hf-votes.db"  
else:
    DATABASE_URL = "sqlite:///./data/local2.db"

engine = create_engine(DATABASE_URL, connect_args={"check_same_thread": False})
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
Base = declarative_base()

# Database model
class Vote(Base):
    __tablename__ = "votes"
    id = Column(Integer, primary_key=True, index=True)
    image_id = Column(String, index=True)
    model_a = Column(String)
    model_b = Column(String)
    winner = Column(String)
    user_id = Column(String, index=True)
    fpath_a = Column(String)
    fpath_b = Column(String)
    timestamp = Column(DateTime, default=datetime.utcnow)

Base.metadata.create_all(bind=engine)

# Dependency for database session
def get_db():
    db = SessionLocal()
    try:
        yield db
    finally:
        db.close()

def fill_database_once(dataset_name="bgsys/votes_datasets_test2"):
    with SessionLocal() as db:
        # Check if the database is already filled
        if db.query(Vote).first() is None:
            dataset = load_dataset(dataset_name)
            for record in dataset['train']:
                # Ensure the timestamp is a string
                timestamp_str = record.get("timestamp", datetime.utcnow().isoformat())
                if not isinstance(timestamp_str, str):
                    timestamp_str = datetime.utcnow().isoformat()
                
                vote_data = {
                    "image_id": record.get("image_id", ""),
                    "model_a": record.get("model_a", ""),
                    "model_b": record.get("model_b", ""),
                    "winner": record.get("winner", ""),
                    "user_id": record.get("user_id", ""),
                    "fpath_a": record.get("fpath_a", ""),
                    "fpath_b": record.get("fpath_b", ""),
                    "timestamp": datetime.fromisoformat(timestamp_str)
                }
                db_vote = Vote(**vote_data)
                db.add(db_vote)
            db.commit()
            logging.info("Database filled with data from Hugging Face dataset: %s", dataset_name)
        else:
            logging.info("Database already filled, skipping dataset loading.")

def add_vote(vote_data):
    with SessionLocal() as db:
        db_vote = Vote(**vote_data)
        db.add(db_vote)
        db.commit()
        db.refresh(db_vote)
        logging.info("Vote registered with ID: %s, using database: %s", db_vote.id, DATABASE_URL)
        return {"id": db_vote.id, "user_id": db_vote.user_id, "timestamp": db_vote.timestamp}

# Function to get all votes
def get_all_votes():
    with SessionLocal() as db:
        votes = db.query(Vote).all()
        return votes

# Function to compute Elo scores
def compute_elo_scores():
    valid_models = ["Photoroom", "RemoveBG", "BRIA RMBG 2.0", "Clipdrop"]
    
    with SessionLocal() as db:
        votes = db.query(Vote).all()
        data = {
            "model_a": [vote.model_a for vote in votes],
            "model_b": [vote.model_b for vote in votes],
            "winner": [vote.winner for vote in votes]
        }
        df = pd.DataFrame(data)
        init_size = df.shape[0]

        # Remove votes missing model_a, model_b or winner info
        df.dropna(subset=["model_a", "model_b", "winner"], inplace=True)
        
        # Validate models and winner
        def is_valid_vote(row):
            if row["model_a"] not in valid_models or row["model_b"] not in valid_models:
                return False
            if row["winner"] not in ["model_a", "model_b", "tie"]:
                return False
            return True
        
        df = df[df.apply(is_valid_vote, axis=1)]
        logging.info("Initial votes count: %d", init_size)
        logging.info("Votes count after validation: %d", df.shape[0])

        # Seed the random number generator for reproducibility
        np.random.seed(42)

        bootstrap_elo_scores = compute_bootstrap_elo(df)
        median_elo_scores = get_median_elo_from_bootstrap(bootstrap_elo_scores)

        model_rating_q025 = bootstrap_elo_scores.quantile(0.025)
        model_rating_q975 = bootstrap_elo_scores.quantile(0.975)
        variance = bootstrap_elo_scores.var()

        return  median_elo_scores, model_rating_q025, model_rating_q975, variance

# Function to compute the number of votes for each model
def compute_votes_per_model():
    with SessionLocal() as db:
        votes = db.query(Vote).all()
        model_vote_count = {}
        
        for vote in votes:
            if vote.winner == "model_a":
                model = vote.model_a
            elif vote.winner == "model_b":
                model = vote.model_b
            else:
                continue
            
            if model not in model_vote_count:
                model_vote_count[model] = 0
            model_vote_count[model] += 1
        
        return model_vote_count