|
from datasets import Dataset, Features, Value, Image |
|
from huggingface_hub import HfApi |
|
import os |
|
from collections import defaultdict |
|
import pandas as pd |
|
import argparse |
|
from PIL import Image as PILImage |
|
import sys |
|
import logging |
|
|
|
def upload_to_dataset(original_images_dir, processed_images_dir, dataset_name, dry_run=False): |
|
"""Upload images to a Hugging Face dataset including BiRefNet results.""" |
|
|
|
logging.info(f"Starting dataset upload from {original_images_dir}") |
|
|
|
|
|
features = Features({ |
|
"original_image": Image(), |
|
"clipdrop_image": Image(), |
|
"bria_image": Image(), |
|
"photoroom_image": Image(), |
|
"removebg_image": Image(), |
|
"birefnet_image": Image(), |
|
"original_filename": Value("string") |
|
}) |
|
|
|
|
|
data = defaultdict(lambda: { |
|
"clipdrop_image": None, |
|
"bria_image": None, |
|
"photoroom_image": None, |
|
"removebg_image": None, |
|
"birefnet_image": None |
|
}) |
|
|
|
|
|
for root, _, files in os.walk(original_images_dir): |
|
for f in files: |
|
if f.endswith(('.png', '.jpg', '.jpeg')): |
|
original_image_path = os.path.join(root, f) |
|
data[f]["original_image"] = original_image_path |
|
data[f]["original_filename"] = f |
|
|
|
|
|
for source in ["clipdrop", "bria", "photoroom", "removebg", "birefnet"]: |
|
for ext in ['.png', '.jpg', '.jpeg', '.webp']: |
|
processed_image_filename = os.path.splitext(f)[0] + ext |
|
source_image_path = os.path.join(processed_images_dir, source, processed_image_filename) |
|
|
|
if os.path.exists(source_image_path): |
|
data[f][f"{source}_image"] = source_image_path |
|
break |
|
|
|
|
|
dataset_dict = { |
|
"original_image": [], |
|
"clipdrop_image": [], |
|
"bria_image": [], |
|
"photoroom_image": [], |
|
"removebg_image": [], |
|
"birefnet_image": [], |
|
"original_filename": [] |
|
} |
|
|
|
errors = [] |
|
processed_count = 0 |
|
skipped_count = 0 |
|
|
|
for filename, entry in data.items(): |
|
if "original_image" in entry: |
|
try: |
|
original_size = PILImage.open(entry["original_image"]).size |
|
valid_entry = True |
|
|
|
for source in ["clipdrop_image", "bria_image", "photoroom_image", "removebg_image", "birefnet_image"]: |
|
if entry[source] is not None: |
|
try: |
|
processed_size = PILImage.open(entry[source]).size |
|
if processed_size != original_size: |
|
errors.append(f"Size mismatch for {filename}: {source}") |
|
valid_entry = False |
|
except Exception as e: |
|
errors.append(f"Error with {filename}: {source}") |
|
valid_entry = False |
|
|
|
if valid_entry: |
|
for key in dataset_dict.keys(): |
|
if key in entry: |
|
dataset_dict[key].append(entry[key]) |
|
processed_count += 1 |
|
else: |
|
skipped_count += 1 |
|
|
|
except Exception as e: |
|
errors.append(f"Error processing {filename}") |
|
skipped_count += 1 |
|
|
|
if errors: |
|
logging.warning(f"Encountered {len(errors)} errors during processing") |
|
|
|
logging.info(f"Processed: {processed_count}, Skipped: {skipped_count}, Total: {processed_count + skipped_count}") |
|
|
|
|
|
df = pd.DataFrame.from_dict(dataset_dict) |
|
df.to_csv("image_data.csv", index=False) |
|
|
|
|
|
dataset = Dataset.from_dict(dataset_dict, features=features) |
|
|
|
if dry_run: |
|
logging.info("Dry run completed - dataset not pushed") |
|
else: |
|
logging.info(f"Pushing dataset to {dataset_name}") |
|
api = HfApi() |
|
dataset.push_to_hub(dataset_name, token=api.token, private=True) |
|
logging.info("Upload completed successfully") |
|
|
|
if __name__ == "__main__": |
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format='%(asctime)s - %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S' |
|
) |
|
|
|
parser = argparse.ArgumentParser(description="Upload images to a Hugging Face dataset.") |
|
parser.add_argument("original_images_dir", type=str, help="Directory containing the original images.") |
|
parser.add_argument("processed_images_dir", type=str, help="Directory containing the processed images with subfolders for each model.") |
|
parser.add_argument("dataset_name", type=str, help="Name of the dataset to upload to Hugging Face Hub.") |
|
parser.add_argument("--dry-run", action="store_true", help="Perform a dry run without uploading to the hub.") |
|
|
|
args = parser.parse_args() |
|
|
|
upload_to_dataset(args.original_images_dir, args.processed_images_dir, args.dataset_name, dry_run=args.dry_run) |
|
|