background-removal-arena / utils /upload-to-dataset.py
tdurbor's picture
add upload to dataset
57f3c81
raw
history blame
2.97 kB
from datasets import Dataset, Features, Value, Image
from huggingface_hub import HfApi
import os
from collections import defaultdict
import pandas as pd
# Define the path to your images
IMAGE_DIR = "../../background-removal-arena-v0/train/data/resized"
# Define the dataset features with dedicated columns for each model
features = Features({
"original_image": Image(), # Original image feature
"clipdrop_image": Image(), # Clipdrop segmented image
"bria_image": Image(), # Bria segmented image
"photoroom_image": Image(), # Photoroom segmented image
"removebg_image": Image(), # RemoveBG segmented image
"original_filename": Value("string") # Original filename
})
# Load image paths and metadata
data = defaultdict(lambda: {
"clipdrop_image": None,
"bria_image": None,
"photoroom_image": None,
"removebg_image": None
})
# Walk into the web-original-images folder
web_original_images_dir = os.path.join(IMAGE_DIR, "web-original-images")
for root, _, files in os.walk(web_original_images_dir):
for f in files:
if f.endswith(('.png', '.jpg', '.jpeg')):
original_image_path = os.path.join(root, f)
data[f]["original_image"] = original_image_path
data[f]["original_filename"] = f
# Check for corresponding images in other directories
for source in ["clipdrop", "bria", "photoroom", "removebg"]:
# Check for processed images ending in .png or .jpg
for ext in ['.png', '.jpg']:
processed_image_filename = os.path.splitext(f)[0] + ext
source_image_path = os.path.join(IMAGE_DIR, source, processed_image_filename)
if os.path.exists(source_image_path):
data[f][f"{source}_image"] = source_image_path
break # Stop checking other extensions if a file is found
# Convert the data to a dictionary of lists
dataset_dict = {
"original_image": [],
"clipdrop_image": [],
"bria_image": [],
"photoroom_image": [],
"removebg_image": [],
"original_filename": []
}
for filename, entry in data.items():
if "original_image" in entry:
dataset_dict["original_image"].append(entry["original_image"])
dataset_dict["clipdrop_image"].append(entry["clipdrop_image"])
dataset_dict["bria_image"].append(entry["bria_image"])
dataset_dict["photoroom_image"].append(entry["photoroom_image"])
dataset_dict["removebg_image"].append(entry["removebg_image"])
dataset_dict["original_filename"].append(filename)
# Save the data dictionary to a CSV file for inspection
df = pd.DataFrame.from_dict(dataset_dict)
df.to_csv("image_data.csv", index=False)
# Create a Dataset
dataset = Dataset.from_dict(dataset_dict, features=features)
# Push the dataset to Hugging Face Hub
api = HfApi()
dataset.push_to_hub("bgsys/background-removal-arena-test", token=api.token)