from datasets import Dataset, Features, Value, Image from huggingface_hub import HfApi import os from collections import defaultdict import pandas as pd import argparse from PIL import Image as PILImage import sys import logging def upload_to_dataset(original_images_dir, processed_images_dir, dataset_name, dry_run=False): """Upload images to a Hugging Face dataset including BiRefNet results.""" logging.info(f"Starting dataset upload from {original_images_dir}") # Define the dataset features with dedicated columns for each model features = Features({ "original_image": Image(), "clipdrop_image": Image(), "bria_image": Image(), "photoroom_image": Image(), "removebg_image": Image(), "birefnet_image": Image(), "original_filename": Value("string") }) # Load image paths and metadata data = defaultdict(lambda: { "clipdrop_image": None, "bria_image": None, "photoroom_image": None, "removebg_image": None, "birefnet_image": None }) # Walk into the original images folder for root, _, files in os.walk(original_images_dir): for f in files: if f.endswith(('.png', '.jpg', '.jpeg')): original_image_path = os.path.join(root, f) data[f]["original_image"] = original_image_path data[f]["original_filename"] = f # Check for corresponding images in processed directories for source in ["clipdrop", "bria", "photoroom", "removebg", "birefnet"]: for ext in ['.png', '.jpg', '.jpeg', '.webp']: processed_image_filename = os.path.splitext(f)[0] + ext source_image_path = os.path.join(processed_images_dir, source, processed_image_filename) if os.path.exists(source_image_path): data[f][f"{source}_image"] = source_image_path break # Convert the data to a dictionary of lists dataset_dict = { "original_image": [], "clipdrop_image": [], "bria_image": [], "photoroom_image": [], "removebg_image": [], "birefnet_image": [], "original_filename": [] } errors = [] processed_count = 0 skipped_count = 0 for filename, entry in data.items(): if "original_image" in entry: try: original_size = PILImage.open(entry["original_image"]).size valid_entry = True for source in ["clipdrop_image", "bria_image", "photoroom_image", "removebg_image", "birefnet_image"]: if entry[source] is not None: try: processed_size = PILImage.open(entry[source]).size if processed_size != original_size: errors.append(f"Size mismatch for {filename}: {source}") valid_entry = False except Exception as e: errors.append(f"Error with {filename}: {source}") valid_entry = False if valid_entry: for key in dataset_dict.keys(): if key in entry: dataset_dict[key].append(entry[key]) processed_count += 1 else: skipped_count += 1 except Exception as e: errors.append(f"Error processing {filename}") skipped_count += 1 if errors: logging.warning(f"Encountered {len(errors)} errors during processing") logging.info(f"Processed: {processed_count}, Skipped: {skipped_count}, Total: {processed_count + skipped_count}") # Save the data dictionary to a CSV file for inspection df = pd.DataFrame.from_dict(dataset_dict) df.to_csv("image_data.csv", index=False) # Create a Dataset dataset = Dataset.from_dict(dataset_dict, features=features) if dry_run: logging.info("Dry run completed - dataset not pushed") else: logging.info(f"Pushing dataset to {dataset_name}") api = HfApi() dataset.push_to_hub(dataset_name, token=api.token, private=True) logging.info("Upload completed successfully") if __name__ == "__main__": logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) parser = argparse.ArgumentParser(description="Upload images to a Hugging Face dataset.") parser.add_argument("original_images_dir", type=str, help="Directory containing the original images.") parser.add_argument("processed_images_dir", type=str, help="Directory containing the processed images with subfolders for each model.") parser.add_argument("dataset_name", type=str, help="Name of the dataset to upload to Hugging Face Hub.") parser.add_argument("--dry-run", action="store_true", help="Perform a dry run without uploading to the hub.") args = parser.parse_args() upload_to_dataset(args.original_images_dir, args.processed_images_dir, args.dataset_name, dry_run=args.dry_run)