from datasets import Dataset, Features, Value, Image from huggingface_hub import HfApi import os from collections import defaultdict import pandas as pd # Define the path to your images IMAGE_DIR = "../../background-removal-arena-v0/train/data/resized" # Define the dataset features with dedicated columns for each model features = Features({ "original_image": Image(), # Original image feature "clipdrop_image": Image(), # Clipdrop segmented image "bria_image": Image(), # Bria segmented image "photoroom_image": Image(), # Photoroom segmented image "removebg_image": Image(), # RemoveBG segmented image "original_filename": Value("string") # Original filename }) # Load image paths and metadata data = defaultdict(lambda: { "clipdrop_image": None, "bria_image": None, "photoroom_image": None, "removebg_image": None }) # Walk into the web-original-images folder web_original_images_dir = os.path.join(IMAGE_DIR, "web-original-images") for root, _, files in os.walk(web_original_images_dir): for f in files: if f.endswith(('.png', '.jpg', '.jpeg')): original_image_path = os.path.join(root, f) data[f]["original_image"] = original_image_path data[f]["original_filename"] = f # Check for corresponding images in other directories for source in ["clipdrop", "bria", "photoroom", "removebg"]: # Check for processed images ending in .png or .jpg for ext in ['.png', '.jpg']: processed_image_filename = os.path.splitext(f)[0] + ext source_image_path = os.path.join(IMAGE_DIR, source, processed_image_filename) if os.path.exists(source_image_path): data[f][f"{source}_image"] = source_image_path break # Stop checking other extensions if a file is found # Convert the data to a dictionary of lists dataset_dict = { "original_image": [], "clipdrop_image": [], "bria_image": [], "photoroom_image": [], "removebg_image": [], "original_filename": [] } for filename, entry in data.items(): if "original_image" in entry: dataset_dict["original_image"].append(entry["original_image"]) dataset_dict["clipdrop_image"].append(entry["clipdrop_image"]) dataset_dict["bria_image"].append(entry["bria_image"]) dataset_dict["photoroom_image"].append(entry["photoroom_image"]) dataset_dict["removebg_image"].append(entry["removebg_image"]) dataset_dict["original_filename"].append(filename) # Save the data dictionary to a CSV file for inspection df = pd.DataFrame.from_dict(dataset_dict) df.to_csv("image_data.csv", index=False) # Create a Dataset dataset = Dataset.from_dict(dataset_dict, features=features) # Push the dataset to Hugging Face Hub api = HfApi() dataset.push_to_hub("bgsys/background-removal-arena-test", token=api.token)