Spaces:
Runtime error
Runtime error
File size: 3,432 Bytes
c2f314c 0d29e9f 7aec4a9 680c3bf c2f314c 7aec4a9 0d29e9f 17a50fe 7aec4a9 0d29e9f 7aec4a9 0d29e9f bb347bc c4c4b83 54771e9 a9057b2 c0c58ec 54771e9 c0c58ec 0d29e9f 54771e9 dac85aa 0d29e9f dac85aa b314fb6 0d29e9f dac85aa 5be066f 54771e9 c0c58ec 0d29e9f dac85aa ca3f0cd 0d29e9f dac85aa c0c58ec ca3f0cd 3f7bb18 ca3f0cd dee90a9 ca3f0cd dee90a9 2ee086f ca3f0cd dee90a9 2ee086f 3f7bb18 ca3f0cd 7aec4a9 dee90a9 0d29e9f dac85aa 7aec4a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import gradio as gr
import jax
import jax.numpy as jnp
from diffusers import FlaxPNDMScheduler, FlaxStableDiffusionPipeline
from flax.jax_utils import replicate
from flax.training.common_utils import shard
DTYPE = jnp.bfloat16
pipeline, pipeline_params = FlaxStableDiffusionPipeline.from_pretrained(
"bguisard/stable-diffusion-nano-2-1",
dtype=DTYPE,
)
if DTYPE != jnp.float32:
# There is a known issue with schedulers when loading from a pre trained
# pipeline. We need the schedulers to always use float32.
# See: https://github.com/huggingface/diffusers/issues/2155
scheduler, scheduler_params = FlaxPNDMScheduler.from_pretrained(
pretrained_model_name_or_path="bguisard/stable-diffusion-nano-2-1",
subfolder="scheduler",
dtype=jnp.float32,
)
pipeline_params["scheduler"] = scheduler_params
pipeline.scheduler = scheduler
def generate_image(prompt: str, inference_steps: int = 30, prng_seed: int = 0):
rng = jax.random.PRNGKey(int(prng_seed))
rng = jax.random.split(rng, jax.device_count())
p_params = replicate(pipeline_params)
num_samples = 1
prompt_ids = pipeline.prepare_inputs([prompt] * num_samples)
prompt_ids = shard(prompt_ids)
images = pipeline(
prompt_ids=prompt_ids,
params=p_params,
prng_seed=rng,
height=128,
width=128,
num_inference_steps=int(inference_steps),
jit=True,
).images
images = images.reshape((num_samples,) + images.shape[-3:])
images = pipeline.numpy_to_pil(images)
return images[0]
prompt_input = gr.inputs.Textbox(
label="Prompt", placeholder="A watercolor painting of a bird"
)
inf_steps_input = gr.inputs.Slider(
minimum=1, maximum=100, default=30, step=1, label="Inference Steps"
)
seed_input = gr.inputs.Number(default=0, label="Seed")
app = gr.Interface(
fn=generate_image,
inputs=[prompt_input, inf_steps_input, seed_input],
outputs="image",
title="🤗 Stable Diffusion Nano 🧨",
description=(
"Based on stable diffusion and fine-tuned on 128x128 images, "
"[Stable Diffusion Nano](hf.co/bguisard/stable-diffusion-nano-2-1) allows "
"for fast prototyping of diffusion models, enabling quick experimentation "
"with easily available hardware."
" It performs reasonably well on several tasks, but it struggles "
"with small details such as faces."
"\n\nprompt:\nA watercolor painting of an otter"
"\n\n"
"![images_0](https://huggingface.co/spaces/bguisard/stable-diffusion-nano/blob/main/images_0.png)"
"\n\nprompt:\nMarvel MCU deadpool, red mask, red shirt, red gloves, black shoulders, black elbow pads, black legs, gold buckle, black belt, black mask, white eyes, black boots, fuji low light color 35mm film, downtown Osaka alley at night out of focus in background, neon lights"
"\n\n"
"![images_1](https://huggingface.co/spaces/bguisard/stable-diffusion-nano/blob/main/images_1.png)"
),
css="h1 { text-align: center }",
# Some examples were copied from hf.co/spaces/stabilityai/stable-diffusion
# examples=[
# ["A watercolor painting of a bird", 30, 0],
# ["A small cabin on top of a snowy mountain in the style of Disney, artstation", 30, 232190380],
# ["A mecha robot in a favela in expressionist style", 30, 827198341273],
# ],
)
app.launch()
|