bhanusAI commited on
Commit
9cf759e
·
verified ·
1 Parent(s): 28c7dea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -55
app.py CHANGED
@@ -1,56 +1,56 @@
1
- import os
2
- import pickle
3
- import numpy as np
4
- import tensorflow as tf
5
- from flask import Flask, render_template, request
6
- from PIL import Image
7
- import keras
8
- from keras.applications.vgg16 import preprocess_input
9
- from tensorflow.keras.applications.vgg16 import preprocess_input
10
- import gradio as gr
11
-
12
- def model(img):
13
- model_dir = 'cataract'
14
- class_names = ['Normal', 'Cataract'] # Cataract class labels
15
- channel='RGB'
16
- selected_model = 'cataract'
17
-
18
- architecture_path = os.path.join('models',model_dir, f'model_architecture_{selected_model}.pkl')
19
- weights_path = os.path.join('models',model_dir, f'model_weights_{selected_model}.pkl')
20
-
21
- with open(architecture_path, 'rb') as f:
22
- loaded_model_architecture = pickle.load(f)
23
-
24
- with open(weights_path, 'rb') as f:
25
- loaded_model_weights = pickle.load(f)
26
-
27
- # Create the model using the loaded architecture
28
- loaded_model = tf.keras.models.model_from_json(loaded_model_architecture)
29
-
30
- # Set the loaded weights to the model
31
- loaded_model.set_weights(loaded_model_weights)
32
-
33
- # Load and preprocess the image
34
- try:
35
- image = Image.open(img).convert(channel).resize((256, 256))
36
- except:
37
- print("ERROR")
38
- return "ERROR"
39
- x = np.array(image)
40
- x = np.expand_dims(x, axis=0)
41
- x = preprocess_input(x)
42
-
43
- # Make predictions
44
- predictions = loaded_model.predict(x)
45
- print(predictions)
46
-
47
- predicted_class_index = 1 if (predictions[0]>0.5) else 0
48
- print(predicted_class_index)
49
-
50
- predicted_class_label = class_names[predicted_class_index]
51
-
52
- return predicted_class_label
53
-
54
- cataract_app = gr.Interface(model,gr.Image())
55
-
56
  cataract_app.launch(share=True)
 
1
+ import os
2
+ import pickle
3
+ import numpy as np
4
+ import tensorflow as tf
5
+ from flask import Flask, render_template, request
6
+ from PIL import Image
7
+ import keras
8
+ from keras.applications.vgg16 import preprocess_input
9
+ from tensorflow.keras.applications.vgg16 import preprocess_input
10
+ import gradio as gr
11
+
12
+ def model(img):
13
+ model_dir = 'cataract'
14
+ class_names = ['Normal', 'Cataract'] # Cataract class labels
15
+ channel='RGB'
16
+ selected_model = 'cataract'
17
+
18
+ architecture_path = os.path.join('models',model_dir, f'model_architecture_{selected_model}.pkl')
19
+ weights_path = os.path.join('models',model_dir, f'model_weights_{selected_model}.pkl')
20
+
21
+ with open(architecture_path, 'rb') as f:
22
+ loaded_model_architecture = pickle.load(f)
23
+
24
+ with open(weights_path, 'rb') as f:
25
+ loaded_model_weights = pickle.load(f)
26
+
27
+ # Create the model using the loaded architecture
28
+ loaded_model = tf.keras.models.model_from_json(loaded_model_architecture)
29
+
30
+ # Set the loaded weights to the model
31
+ loaded_model.set_weights(loaded_model_weights)
32
+
33
+ # Load and preprocess the image
34
+ try:
35
+ image = Image.open(img).convert(channel).resize((256, 256))
36
+ except:
37
+ print("ERROR")
38
+ return "ERROR"
39
+ x = np.array(image)
40
+ x = np.expand_dims(x, axis=0)
41
+ x = preprocess_input(x)
42
+
43
+ # Make predictions
44
+ predictions = loaded_model.predict(x)
45
+ print(predictions)
46
+
47
+ predicted_class_index = 1 if (predictions[0]>0.5) else 0
48
+ print(predicted_class_index)
49
+
50
+ predicted_class_label = class_names[predicted_class_index]
51
+
52
+ return predicted_class_label
53
+
54
+ cataract_app = gr.Interface(model,gr.Image(),["text"])
55
+
56
  cataract_app.launch(share=True)