Spaces:
Sleeping
Sleeping
File size: 2,472 Bytes
6a5c7ef 49183b2 bef811e 6a5c7ef 49183b2 01462ec 65d5227 660bb15 65d5227 49183b2 6a5c7ef 49183b2 65d5227 49183b2 65d5227 49183b2 6a5c7ef 49183b2 6a5c7ef 7bc8f9c 49183b2 660bb15 bef811e 59ce7be bef811e 49183b2 bef811e 49183b2 bef811e 49183b2 509133e 660bb15 509133e 660bb15 509133e 660bb15 509133e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import numpy as np
import gradio as gr
import tensorflow as tf # version 2.13.0
from keras.models import load_model
import cv2
import json
import os
def analyse(img):
# Load label_disease.json
with open('data/label_disease.json', 'r') as f:
label_disease = json.load(f)
# Load plant_label_disease.json
with open('data/plant_label_disease.json', 'r') as f:
plant_label_disease = json.load(f)
HEIGHT = 256
WIDTH = 256
modelArchitecturePath = 'model/model_architecture.h5'
modelWeightsPath = 'model/model_weights.h5'
# Load the model
dnn_model = load_model(modelArchitecturePath, compile=False)
dnn_model.load_weights(modelWeightsPath)
# Preprocess the image
process_img = cv2.resize(img, (HEIGHT, WIDTH), interpolation=cv2.INTER_LINEAR)
process_img = process_img / 255.0
process_img = np.expand_dims(process_img, axis=0)
# Predict using the model
y_pred = dnn_model.predict(process_img)
y_pred = y_pred[0]
# Identify overall prediction
overall_predicted_id = int(np.argmax(y_pred))
overall_predicted_name = label_disease[str(overall_predicted_id)]
overall_predicted_confidence = float(y_pred[overall_predicted_id])
# Determine health status
is_overall_healthy = "healthy" in overall_predicted_name.lower()
# Return results as a JSON object
result = {
"overall_prediction_id": overall_predicted_id,
"overall_prediction_name": overall_predicted_name,
"overall_confidence": overall_predicted_confidence,
"is_overall_healthy": is_overall_healthy
}
return result
# Build the Gradio Blocks interface
with gr.Blocks() as demo:
gr.Markdown("## Plant Disease Detection")
gr.Markdown("Upload an image of a plant leaf to detect diseases.")
with gr.Row():
input_image = gr.Image(label="Upload Image", type="numpy")
submit = gr.Button("Analyze")
with gr.Column():
result_json = gr.JSON(label="Analysis Result")
# Example images section
gr.Examples(
examples=[os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))],
inputs=[input_image],
label="Examples",
cache_examples=False,
examples_per_page=8
)
# Define interaction
submit.click(fn=analyse, inputs=[input_image], outputs=result_json)
# Launch the application
demo.launch(share=True, show_error=True)
|