Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ import cv2
|
|
6 |
import json
|
7 |
import os
|
8 |
|
9 |
-
def analyse(img):
|
10 |
# Load label_disease.json
|
11 |
with open('data/label_disease.json', 'r') as f:
|
12 |
label_disease = json.load(f)
|
@@ -33,16 +33,32 @@ def analyse(img):
|
|
33 |
y_pred = dnn_model.predict(process_img)
|
34 |
y_pred = y_pred[0]
|
35 |
|
36 |
-
# Identify
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
overall_predicted_id = int(np.argmax(y_pred))
|
38 |
overall_predicted_name = label_disease[str(overall_predicted_id)]
|
39 |
overall_predicted_confidence = float(y_pred[overall_predicted_id])
|
40 |
|
|
|
|
|
|
|
|
|
41 |
# Determine health status
|
|
|
42 |
is_overall_healthy = "healthy" in overall_predicted_name.lower()
|
43 |
|
44 |
# Return results as a JSON object
|
45 |
result = {
|
|
|
|
|
|
|
|
|
46 |
"overall_prediction_id": overall_predicted_id,
|
47 |
"overall_prediction_name": overall_predicted_name,
|
48 |
"overall_confidence": overall_predicted_confidence,
|
@@ -54,11 +70,17 @@ def analyse(img):
|
|
54 |
# Build the Gradio Blocks interface
|
55 |
with gr.Blocks() as demo:
|
56 |
gr.Markdown("## Plant Disease Detection")
|
57 |
-
gr.Markdown("Upload an image of a plant leaf to detect diseases.")
|
58 |
|
59 |
with gr.Row():
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
with gr.Column():
|
64 |
result_json = gr.JSON(label="Analysis Result")
|
@@ -73,7 +95,7 @@ with gr.Blocks() as demo:
|
|
73 |
)
|
74 |
|
75 |
# Define interaction
|
76 |
-
submit.click(fn=analyse, inputs=[input_image], outputs=result_json)
|
77 |
|
78 |
# Launch the application
|
79 |
-
demo.launch(share=True, show_error=True)
|
|
|
6 |
import json
|
7 |
import os
|
8 |
|
9 |
+
def analyse(img, plant_type):
|
10 |
# Load label_disease.json
|
11 |
with open('data/label_disease.json', 'r') as f:
|
12 |
label_disease = json.load(f)
|
|
|
33 |
y_pred = dnn_model.predict(process_img)
|
34 |
y_pred = y_pred[0]
|
35 |
|
36 |
+
# Identify plant-specific predictions
|
37 |
+
plant_label_ids = plant_label_disease[plant_type.lower()]
|
38 |
+
plant_predicted_id = plant_label_ids[0]
|
39 |
+
for disease in plant_label_ids:
|
40 |
+
if y_pred[disease] > y_pred[plant_predicted_id]:
|
41 |
+
plant_predicted_id = disease
|
42 |
+
|
43 |
+
# Determine overall prediction
|
44 |
overall_predicted_id = int(np.argmax(y_pred))
|
45 |
overall_predicted_name = label_disease[str(overall_predicted_id)]
|
46 |
overall_predicted_confidence = float(y_pred[overall_predicted_id])
|
47 |
|
48 |
+
# Determine plant-specific prediction
|
49 |
+
plant_predicted_name = label_disease[str(plant_predicted_id)]
|
50 |
+
plant_predicted_confidence = float(y_pred[plant_predicted_id])
|
51 |
+
|
52 |
# Determine health status
|
53 |
+
is_plant_specific_healthy = "healthy" in plant_predicted_name.lower()
|
54 |
is_overall_healthy = "healthy" in overall_predicted_name.lower()
|
55 |
|
56 |
# Return results as a JSON object
|
57 |
result = {
|
58 |
+
"plant_specific_prediction_id": plant_predicted_id,
|
59 |
+
"plant_specific_prediction_name": plant_predicted_name,
|
60 |
+
"plant_specific_confidence": plant_predicted_confidence,
|
61 |
+
"is_plant_specific_healthy": is_plant_specific_healthy,
|
62 |
"overall_prediction_id": overall_predicted_id,
|
63 |
"overall_prediction_name": overall_predicted_name,
|
64 |
"overall_confidence": overall_predicted_confidence,
|
|
|
70 |
# Build the Gradio Blocks interface
|
71 |
with gr.Blocks() as demo:
|
72 |
gr.Markdown("## Plant Disease Detection")
|
73 |
+
gr.Markdown("Upload an image of a plant leaf and select the plant type to detect diseases.")
|
74 |
|
75 |
with gr.Row():
|
76 |
+
with gr.Column():
|
77 |
+
input_image = gr.Image(label="Upload Image", type="numpy")
|
78 |
+
plant_type = gr.Radio(
|
79 |
+
["Apple", "Blueberry", "Cherry", "Corn", "Grape", "Orange", "Peach",
|
80 |
+
"Pepper", "Potato", "Raspberry", "Soybean", "Squash", "Strawberry", "Tomato"],
|
81 |
+
label="Plant Type"
|
82 |
+
)
|
83 |
+
submit = gr.Button("Analyze")
|
84 |
|
85 |
with gr.Column():
|
86 |
result_json = gr.JSON(label="Analysis Result")
|
|
|
95 |
)
|
96 |
|
97 |
# Define interaction
|
98 |
+
submit.click(fn=analyse, inputs=[input_image, plant_type], outputs=result_json)
|
99 |
|
100 |
# Launch the application
|
101 |
+
demo.launch(share=True, show_error=True)
|