File size: 1,845 Bytes
9cf759e
 
 
 
 
 
 
 
 
 
4d172bd
9cf759e
 
ae77b30
 
 
 
9cf759e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ae0bda
9cf759e
 
4d172bd
 
29cab5e
9cf759e
 
8ae0bda
9cf759e
 
 
 
 
 
 
 
 
ae77b30
f2c1a80
dbafdcc
 
f2c1a80
9cf759e
 
 
 
28c7dea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import pickle
import numpy as np
import tensorflow as tf
from flask import Flask, render_template, request
from PIL import Image
import keras
from keras.applications.vgg16 import preprocess_input 
from tensorflow.keras.applications.vgg16 import preprocess_input 
import gradio as gr
import cv2

def model(img):
    model_dir = 'pneumonia'
    class_names = ['Normal eye', 'pneumonic lung']  # Pneumonia class labels
    channel='L'
    selected_model = 'pneumonia'

    architecture_path = os.path.join('models',model_dir, f'model_architecture_{selected_model}.pkl')
    weights_path = os.path.join('models',model_dir, f'model_weights_{selected_model}.pkl')

    with open(architecture_path, 'rb') as f:
        loaded_model_architecture = pickle.load(f)

    with open(weights_path, 'rb') as f:
        loaded_model_weights = pickle.load(f)
    
    # Create the model using the loaded architecture
    loaded_model = tf.keras.models.model_from_json(loaded_model_architecture)

    # Set the loaded weights to the model
    loaded_model.set_weights(loaded_model_weights)

    loaded_model.summary()
    # Load and preprocess the image
    try:
        # image = img.convert(channel).resize((256, 256))
        image = cv2.resize(img, (256, 256))
        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    except:
        print("ERROR")
        print(image)
        return "ERROR"
    x = np.array(image)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)

    # Make predictions
    predictions = loaded_model.predict(x)
    print(predictions)

    predicted_class_index = np.argmax(predictions[0])
    print(predicted_class_index)

    predicted_class_label = class_names[predicted_class_index]
    
    return predicted_class_label

cataract_app = gr.Interface(model,gr.Image(),["text"])

cataract_app.launch(share=True)