import gradio as gr from transformers import pipeline def image_classifier(image): pipe = pipeline("image-classification", "bhargob11/vit-base-patch16-224-in21k-finetuned-housplants") output = pipe(image) best_prediction = max(output, key=lambda x: x['score']) best_label = best_prediction['label'] return best_label gr.close_all() demo = gr.Interface(fn=image_classifier, inputs=[gr.Image(label="Upload image", type="pil")], outputs=[gr.Textbox(label="Category")], title="Image Classification with Fine-Tuned ViT Model", description="Classify any houseplant images", allow_flagging="never") # examples=["christmas_dog.jpeg", "bird_flight.jpeg", "cow.jpeg"]) demo.launch(share=True) # server_port=int(os.environ['PORT1'])