Spaces:
Runtime error
Runtime error
File size: 5,618 Bytes
20ce1c5 fac4035 20ce1c5 d3f4918 20ce1c5 d3f4918 20ce1c5 d3f4918 20ce1c5 bd18ceb 20ce1c5 d3f4918 20ce1c5 feab799 20ce1c5 feab799 20ce1c5 d3f4918 20ce1c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gradio as gr
import requests
import os
import numpy as np
import pandas as pd
import json
import socket
import huggingface_hub
from huggingface_hub import Repository
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
from questiongenerator import QuestionGenerator
import csv
from urllib.request import urlopen
import re as r
qg = QuestionGenerator()
HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_NAME = "Text2Question"
DATASET_REPO_URL = f"https://huggingface.co/spaces/bhaskartripathi/{DATASET_NAME}"
DATA_FILENAME = "que_gen_logs.csv"
DATA_FILE = os.path.join("que_gen_logs", DATA_FILENAME)
DATASET_REPO_ID = "bhaskartripathi/Text2Question"
print("is none?", HF_TOKEN is None)
article_value = """Affecting computing is an artificial intelligence area of study that recognizes, interprets, processes, and simulates human affects. The user’s emotional states can be sensed through electroencephalography (EEG)-based Brain Computer Interfaces (BCI) devices. Research in emotion recognition using these tools is a rapidly growing field with multiple inter-disciplinary applications. This article performs a survey of the pertinent scientific literature from 2015 to 2020. It presents trends and a comparative analysis of algorithm applications in new implementations from a computer science perspective. Our survey gives an overview of datasets, emotion elicitation methods, feature extraction and selection, classification algorithms, and performance evaluation. Lastly, we provide insights for future developments."""
# REPOSITORY_DIR = "data"
# LOCAL_DIR = 'data_local'
# os.makedirs(LOCAL_DIR,exist_ok=True)
try:
hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=DATA_FILENAME,
cache_dir=DATA_DIRNAME,
force_filename=DATA_FILENAME
)
except:
print("file not found")
repo = Repository(
local_dir="que_gen_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
def getIP():
ip_address = ''
try:
d = str(urlopen('http://checkip.dyndns.com/')
.read())
return r.compile(r'Address: (\d+\.\d+\.\d+\.\d+)').search(d).group(1)
except Exception as e:
print("Error while getting IP address -->",e)
return ip_address
def get_location(ip_addr):
location = {}
try:
ip=ip_addr
req_data={
"ip":ip,
"token":"pkml123"
}
url = "https://bhaskartripathi.com/get-ip-location"
# req_data=json.dumps(req_data)
# print("req_data",req_data)
headers = {'Content-Type': 'application/json'}
response = requests.request("POST", url, headers=headers, data=json.dumps(req_data))
response = response.json()
print("response======>>",response)
return response
except Exception as e:
print("Error while getting location -->",e)
return location
def generate_questions(article,num_que):
result = ''
if article.strip():
if num_que == None or num_que == '':
num_que = 3
else:
num_que = num_que
generated_questions_list = qg.generate(article, num_questions=int(num_que))
summarized_data = {
"generated_questions" : generated_questions_list
}
generated_questions = summarized_data.get("generated_questions",'')
for q in generated_questions:
print(q)
result = result + q + '\n'
#save_data_and_sendmail(article,generated_questions,num_que)
print("sending result***!!!!!!", result)
return result
else:
raise gr.Error("Please enter text in inputbox!!!!")
"""
Save generated details
"""
def save_data_and_sendmail(article,generated_questions,num_que):
try:
ip_address= getIP()
print(ip_address)
location = get_location(ip_address)
print(location)
add_csv = [article, generated_questions, num_que, ip_address,location]
print("data^^^^^",add_csv)
with open(DATA_FILE, "a") as f:
writer = csv.writer(f)
# write the data
writer.writerow(add_csv)
commit_url = repo.push_to_hub()
print("commit data :",commit_url)
url = 'https://bhaskartripathi.com/HF_space_que_gen'
myobj = {'article': article,'total_que': num_que,'gen_que':generated_questions,'ip_addr':ip_address,'loc':location}
x = requests.post(url, json = myobj)
print("myobj^^^^^",myobj)
except Exception as e:
return "Error while sending mail" + str(e)
return "Successfully save data"
## design 1
inputs=gr.Textbox(value=article_value, lines=5, label="Input Text/Article",elem_id="inp_div")
total_que = gr.Textbox(value=3, label="Enter the number of questions to generate",elem_id="inp_div")
outputs=gr.Textbox(label="Generated Questions",lines=6,elem_id="inp_div")
demo = gr.Interface(
generate_questions,
[inputs,total_que],
outputs,
title="Text2Question Generation with Text-to-Text-Transfer-Transformer",
css=".gradio-container {background-color: lightgray} #inp_div {background-color: #7FB3D5;}",
article="""<p style='text-align: center;'><a href="https://github.com/bhaskatripathi/QuestAnsGenerator/issues" target="_blank">Raise Issues</a></p>
<p style='text-align: center;'>MultiCloud4U Sandbox Env <a href="https://www.multicloud4u.com" target="_blank">Multicloud4U Technologies Pvt. Ltd.</a></p>"""
)
demo.launch() |