File size: 5,618 Bytes
20ce1c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fac4035
 
20ce1c5
 
d3f4918
20ce1c5
d3f4918
20ce1c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3f4918
20ce1c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd18ceb
20ce1c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3f4918
 
20ce1c5
 
 
 
 
 
 
 
 
 
 
feab799
20ce1c5
 
 
 
 
 
feab799
20ce1c5
d3f4918
 
20ce1c5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import gradio as gr
import requests
import os
import numpy as np
import pandas as pd
import json
import socket
import huggingface_hub
from huggingface_hub import Repository
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
from questiongenerator import QuestionGenerator
import csv
from urllib.request import urlopen
import re as r

qg = QuestionGenerator()

HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_NAME = "Text2Question"
DATASET_REPO_URL = f"https://huggingface.co/spaces/bhaskartripathi/{DATASET_NAME}"
DATA_FILENAME = "que_gen_logs.csv"
DATA_FILE = os.path.join("que_gen_logs", DATA_FILENAME)
DATASET_REPO_ID = "bhaskartripathi/Text2Question"
print("is none?", HF_TOKEN is None)
article_value = """Affecting computing is an artificial intelligence area of study that recognizes, interprets, processes, and simulates human affects. The user’s emotional states can be sensed through electroencephalography (EEG)-based Brain Computer Interfaces (BCI) devices. Research in emotion recognition using these tools is a rapidly growing field with multiple inter-disciplinary applications. This article performs a survey of the pertinent scientific literature from 2015 to 2020. It presents trends and a comparative analysis of algorithm applications in new implementations from a computer science perspective. Our survey gives an overview of datasets, emotion elicitation methods, feature extraction and selection, classification algorithms, and performance evaluation. Lastly, we provide insights for future developments."""
# REPOSITORY_DIR = "data"
# LOCAL_DIR = 'data_local'
# os.makedirs(LOCAL_DIR,exist_ok=True)

try:
    hf_hub_download(
        repo_id=DATASET_REPO_ID,
        filename=DATA_FILENAME,
        cache_dir=DATA_DIRNAME,
        force_filename=DATA_FILENAME
    )
    
except:
    print("file not found")

repo = Repository(
    local_dir="que_gen_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)


def getIP():
    ip_address = ''
    try:
    	d = str(urlopen('http://checkip.dyndns.com/')
    			.read())
    
    	return r.compile(r'Address: (\d+\.\d+\.\d+\.\d+)').search(d).group(1)
    except Exception as e:
        print("Error while getting IP address -->",e)
        return ip_address

def get_location(ip_addr):
    location = {}
    try:
        ip=ip_addr
    
        req_data={
            "ip":ip,
            "token":"pkml123"
        }
        url = "https://bhaskartripathi.com/get-ip-location"
    
        # req_data=json.dumps(req_data)
        # print("req_data",req_data)
        headers = {'Content-Type': 'application/json'}
    
        response = requests.request("POST", url, headers=headers, data=json.dumps(req_data))
        response = response.json()
        print("response======>>",response)
        return response
    except Exception as e:
        print("Error while getting location -->",e)
        return location
    
def generate_questions(article,num_que):
    result = ''
    if article.strip():
        if num_que == None or num_que == '':
            num_que = 3
        else:
            num_que = num_que
        generated_questions_list = qg.generate(article, num_questions=int(num_que))
        summarized_data = {
            "generated_questions" : generated_questions_list
        }
        generated_questions = summarized_data.get("generated_questions",'')
            
        for q in generated_questions:
            print(q)
            result = result + q + '\n'
        #save_data_and_sendmail(article,generated_questions,num_que)
        print("sending result***!!!!!!", result)
        return result
    else:
        raise gr.Error("Please enter text in inputbox!!!!")
   
"""
Save generated details
"""
def save_data_and_sendmail(article,generated_questions,num_que):
    try:
        ip_address= getIP()
        print(ip_address)
        location = get_location(ip_address)
        print(location)
        add_csv = [article, generated_questions, num_que, ip_address,location]
        print("data^^^^^",add_csv)
        with open(DATA_FILE, "a") as f:
            writer = csv.writer(f)
            # write the data
            writer.writerow(add_csv)
            commit_url = repo.push_to_hub()
            print("commit data   :",commit_url)
            
        url = 'https://bhaskartripathi.com/HF_space_que_gen'
        
        myobj = {'article': article,'total_que': num_que,'gen_que':generated_questions,'ip_addr':ip_address,'loc':location}
        x = requests.post(url, json = myobj) 
        print("myobj^^^^^",myobj)

    except Exception as e:
        return "Error while sending mail" + str(e)
        
    return "Successfully save data"

## design 1
inputs=gr.Textbox(value=article_value, lines=5, label="Input Text/Article",elem_id="inp_div")
total_que = gr.Textbox(value=3, label="Enter the number of questions to generate",elem_id="inp_div")
outputs=gr.Textbox(label="Generated Questions",lines=6,elem_id="inp_div")

demo = gr.Interface(
    generate_questions,
    [inputs,total_que],
    outputs,
    title="Text2Question Generation with Text-to-Text-Transfer-Transformer",
    css=".gradio-container {background-color: lightgray} #inp_div {background-color: #7FB3D5;}",
    article="""<p style='text-align: center;'><a href="https://github.com/bhaskatripathi/QuestAnsGenerator/issues" target="_blank">Raise Issues</a></p>
                                        <p style='text-align: center;'>MultiCloud4U Sandbox Env <a href="https://www.multicloud4u.com" target="_blank">Multicloud4U Technologies Pvt. Ltd.</a></p>"""
    
)
demo.launch()