Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
import os | |
import numpy as np | |
import pandas as pd | |
import json | |
import socket | |
import huggingface_hub | |
from huggingface_hub import Repository | |
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification | |
from questiongenerator import QuestionGenerator | |
import csv | |
from urllib.request import urlopen | |
import re as r | |
qg = QuestionGenerator() | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
DATASET_NAME = "question_generation_T5_dataset" | |
DATASET_REPO_URL = f"https://huggingface.co/spaces/bhaskartripathi/Text2Question/{DATASET_NAME}" | |
DATA_FILENAME = "que_gen_logs.csv" | |
DATA_FILE = os.path.join("que_gen_logs", DATA_FILENAME) | |
DATASET_REPO_ID = "bhaskartripathi/Text2Question" | |
print("is none?", HF_TOKEN is None) | |
article_value = """Affecting computing is an artificial intelligence area of study that recognizes, interprets, processes, and simulates human affects. The user’s emotional states can be sensed through electroencephalography (EEG)-based Brain Computer Interfaces (BCI) devices. Research in emotion recognition using these tools is a rapidly growing field with multiple inter-disciplinary applications. This article performs a survey of the pertinent scientific literature from 2015 to 2020. It presents trends and a comparative analysis of algorithm applications in new implementations from a computer science perspective. Our survey gives an overview of datasets, emotion elicitation methods, feature extraction and selection, classification algorithms, and performance evaluation. Lastly, we provide insights for future developments.""" | |
# REPOSITORY_DIR = "data" | |
# LOCAL_DIR = 'data_local' | |
# os.makedirs(LOCAL_DIR,exist_ok=True) | |
try: | |
hf_hub_download( | |
repo_id=DATASET_REPO_ID, | |
filename=DATA_FILENAME, | |
cache_dir=DATA_DIRNAME, | |
force_filename=DATA_FILENAME | |
) | |
except: | |
print("file not found") | |
repo = Repository( | |
local_dir="que_gen_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN | |
) | |
def getIP(): | |
ip_address = '' | |
try: | |
d = str(urlopen('http://checkip.dyndns.com/') | |
.read()) | |
return r.compile(r'Address: (\d+\.\d+\.\d+\.\d+)').search(d).group(1) | |
except Exception as e: | |
print("Error while getting IP address -->",e) | |
return ip_address | |
def get_location(ip_addr): | |
location = {} | |
try: | |
ip=ip_addr | |
req_data={ | |
"ip":ip, | |
"token":"pkml123" | |
} | |
url = "https://bhaskartripathi.com/get-ip-location" | |
# req_data=json.dumps(req_data) | |
# print("req_data",req_data) | |
headers = {'Content-Type': 'application/json'} | |
response = requests.request("POST", url, headers=headers, data=json.dumps(req_data)) | |
response = response.json() | |
print("response======>>",response) | |
return response | |
except Exception as e: | |
print("Error while getting location -->",e) | |
return location | |
def generate_questions(article,num_que): | |
result = '' | |
if article.strip(): | |
if num_que == None or num_que == '': | |
num_que = 3 | |
else: | |
num_que = num_que | |
generated_questions_list = qg.generate(article, num_questions=int(num_que)) | |
summarized_data = { | |
"generated_questions" : generated_questions_list | |
} | |
generated_questions = summarized_data.get("generated_questions",'') | |
for q in generated_questions: | |
print(q) | |
result = result + q + '\n' | |
save_data_and_sendmail(article,generated_questions,num_que) | |
print("sending result***!!!!!!", result) | |
return result | |
else: | |
raise gr.Error("Please enter text in inputbox!!!!") | |
""" | |
Save generated details | |
""" | |
def save_data_and_sendmail(article,generated_questions,num_que): | |
try: | |
ip_address= getIP() | |
print(ip_address) | |
location = get_location(ip_address) | |
print(location) | |
add_csv = [article, generated_questions, num_que, ip_address,location] | |
print("data^^^^^",add_csv) | |
with open(DATA_FILE, "a") as f: | |
writer = csv.writer(f) | |
# write the data | |
writer.writerow(add_csv) | |
commit_url = repo.push_to_hub() | |
print("commit data :",commit_url) | |
url = 'https://bhaskartripathi.com/HF_space_que_gen' | |
myobj = {'article': article,'total_que': num_que,'gen_que':generated_questions,'ip_addr':ip_address,'loc':location} | |
x = requests.post(url, json = myobj) | |
print("myobj^^^^^",myobj) | |
except Exception as e: | |
return "Error while sending mail" + str(e) | |
return "Successfully save data" | |
## design 1 | |
inputs=gr.Textbox(value=article_value, lines=5, label="Input Text/Article",elem_id="inp_div") | |
total_que = gr.Textbox(label="Number of questions to generate",elem_id="inp_div") | |
outputs=gr.Textbox(label="Generated Questions",lines=6,elem_id="inp_div") | |
demo = gr.Interface( | |
generate_questions, | |
[inputs,total_que], | |
outputs, | |
title="Question Generation Using T5-Base Model", | |
css=".gradio-container {background-color: lightgray} #inp_div {background-color: #7FB3D5;}", | |
article="""<p style='text-align: center;'><a href="https://github.com/bhaskatripathi/QuestAnsGenerator/issues" target="_blank">Raise Issues</a></p> | |
<p style='text-align: center;'>MultiCloud4U Sandbox Env <a href="https://www.multicloud4u.com" target="_blank">Multicloud4U Technologies Pvt. Ltd.</a></p>""" | |
) | |
demo.launch() |