Spaces:
Running
Running
from evaluate import load | |
import pandas as pd | |
import string | |
# import os | |
# os.environ["CUDA_VISIBLE_DEVICES"] = "3" | |
exact_match_metric = load("exact_match") | |
bleu = load("sacrebleu") | |
# meteor = load('meteor') | |
# comet = load('comet') | |
# bertscore = load('bertscore') | |
# import torch | |
# # Check if CUDA (GPU) is available | |
# if torch.cuda.is_available(): | |
# device = torch.device('cuda') | |
# print("Using GPU:", torch.cuda.get_device_name(0)) | |
# else: | |
# device = torch.device('cpu') | |
# print("Using CPU") | |
# # Optimize for Tensor Cores if available | |
# if 'A100' in torch.cuda.get_device_name(0): | |
# # Set the precision for matrix multiplications | |
# # Choose 'medium' for a balance between performance and precision | |
# # Or 'high' if you need higher precision | |
# torch.set_float32_matmul_precision('medium') | |
df = pd.read_csv("MT0_xxl_results/result_m_eng_l") | |
reference = list(df.label) | |
predicted = list(df.pred_label) | |
# source = list(df.disfluent) | |
def process_sentence(sentence): | |
if not isinstance(sentence, str): | |
return "" | |
# Remove spaces before and after the sentence | |
sentence = sentence.split('\n')[0] | |
sentence = sentence.strip() | |
sentence = sentence.lower() | |
# Remove punctuation marks in the sentence | |
for punctuation in string.punctuation: | |
sentence = sentence.replace(punctuation, "") | |
sentence = sentence.strip() | |
if sentence == "": | |
return sentence | |
if (sentence[-1] == '।'): | |
print(sentence) | |
sentence = sentence[:-1] | |
print(sentence) | |
return sentence | |
reference = [process_sentence(s) for s in list(df.label)] | |
# source = [process_sentence(s) for s in list(df.disfluent)] | |
predicted = [process_sentence(s) for s in list(df.pred_label)] | |
results = {} | |
results['exact_match'] = exact_match_metric.compute(predictions=predicted, references=reference) | |
results['bleu'] = bleu.compute(predictions=predicted, references=reference) | |
# results['meteor'] = meteor.compute(predictions=predicted, references=reference) | |
# results['comet'] = comet.compute(sources=source, predictions=predicted, references=reference) | |
# results['bertscore'] = bertscore.compute(predictions=predicted, references=reference) | |
print(results) |