Spaces:
Sleeping
Sleeping
File size: 1,713 Bytes
9c7a90d e5126f7 9c7a90d d140a00 226adc9 9c7a90d 362d9c3 9c7a90d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
from sentence_transformers import SentenceTransformer, util
from huggingface_hub import hf_hub_download
import os
import pickle
import pandas as pd
import gradio as gr
pd.options.mode.chained_assignment = None # Turn off SettingWithCopyWarning
embeddings = pickle.load(open(hf_hub_download("bhavyagiri/semantic-memes", repo_type="dataset", filename="meme-embeddings.pkl"), "rb"))
df = pd.read_csv(hf_hub_download("bhavyagiri/semantic-memes", repo_type="dataset", filename="input.csv"))
model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
def generate_memes(prompt):
prompt_embedding = model.encode(prompt, convert_to_tensor=True)
hits = util.semantic_search(prompt_embedding, embeddings, top_k=5)
hits = pd.DataFrame(hits[0], columns=['corpus_id', 'score'])
desired_ids = hits["corpus_id"]
filtered_df = df.loc[df['id'].isin(desired_ids)]
filtered_list = list(filtered_df["url"])
images = [gr.Image.update(value=img, visible=True) for img in filtered_list]
return (
images
)
input_textbox = gr.inputs.Textbox(lines=1, label="Search something cool")
output_gallery = gr.Gallery(
label="Retrieved Memes", show_label=False, elem_id="gallery"
).style(columns=[3], rows=[2], object_fit="contain", height="auto")
title = "Semantic Search for Memes"
description = "Search Memes from small dataset of 6k memes"
examples = ['Spiderman giving lecture', 'Angry Karen']
interpretation='default'
enable_queue=True
iface = gr.Interface(fn=generate_memes, inputs=input_textbox, outputs=output_gallery,examples=examples,title=title,description=description,interpretation=interpretation,enable_queue=enable_queue)
iface.launch(inline=False)
|