File size: 9,381 Bytes
663d1ad
61b33b0
663d1ad
 
 
61b33b0
 
2a70269
61b33b0
 
 
1af801b
 
7f07411
61b33b0
 
7f07411
61b33b0
 
 
 
1af801b
 
eaf6036
61b33b0
 
1af801b
61b33b0
 
1af801b
61b33b0
 
 
 
1af801b
61b33b0
 
 
 
 
 
 
 
1af801b
61b33b0
 
 
1af801b
61b33b0
 
1af801b
 
 
 
61b33b0
1af801b
61b33b0
1af801b
61b33b0
 
1af801b
61b33b0
 
1af801b
61b33b0
 
 
 
 
 
 
 
1af801b
61b33b0
 
 
 
 
 
1af801b
61b33b0
 
 
 
 
 
1af801b
61b33b0
 
 
 
1af801b
61b33b0
1af801b
61b33b0
 
 
 
 
 
 
 
 
 
 
 
 
 
663d1ad
61b33b0
6744e1a
61b33b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6744e1a
61b33b0
 
 
6744e1a
61b33b0
 
 
 
 
6744e1a
61b33b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6744e1a
61b33b0
 
 
 
1af801b
7935863
61b33b0
 
 
 
 
 
 
e503f85
61b33b0
 
 
 
7935863
 
 
1af801b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import gradio as gr
import pandas as pd
import numpy as np
import h5py
import json
import os
import tempfile
import re
import time
import logging
from sentence_transformers import SentenceTransformer
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import nltk
import torch
from sklearn.feature_extraction.text import CountVectorizer

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Ensure you have downloaded the necessary NLTK data
nltk.download('stopwords', quiet=True)
nltk.download('punkt', quiet=True)

# Disable tokenizer parallelism warning
os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Check for GPU availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load pre-trained model from Hugging Face
logging.info("Loading SentenceTransformer model...")
model = SentenceTransformer('anferico/bert-for-patents').to(device)
logging.info("SentenceTransformer model loaded successfully.")

def preprocess_text(text):
    # Remove "[EN]" label and claim numbers
    text = re.sub(r'\[EN\]\s*', '', text)
    text = re.sub(r'^\d+\.\s*', '', text, flags=re.MULTILINE)
    
    # Convert to lowercase while preserving acronyms and units
    words = text.split()
    text = ' '.join(word if word.isupper() or re.match(r'^\d+(\.\d+)?[a-zA-Z]+$', word) else word.lower() for word in words)
    
    # Remove special characters except hyphens and periods in numbers
    text = re.sub(r'[^\w\s\-.]', ' ', text)
    text = re.sub(r'(?<!\d)\.(?!\d)', ' ', text)  # Remove periods not in numbers
    
    # Normalize spaces
    text = re.sub(r'\s+', ' ', text).strip()
    
    # Tokenize
    tokens = word_tokenize(text)
    
    # Remove stopwords
    stop_words = set(stopwords.words('english'))
    tokens = [word for word in tokens if word.lower() not in stop_words]
    
    # Join tokens back into text
    text = ' '.join(tokens)
    
    # Preserve numerical values with units
    text = re.sub(r'(\d+(\.\d+)?)([a-zA-Z]+)', r'\1_\3', text)
    
    # Handle ranges and measurements
    text = re.sub(r'(\d+(\.\d+)?)(\s*to\s*)(\d+(\.\d+)?)(\s*[a-zA-Z]+)', r'\1_to_\4_\6', text)
    text = re.sub(r'between\s*(\d+(\.\d+)?)(\s*and\s*)(\d+(\.\d+)?)\s*([a-zA-Z]+)', r'between_\1_and_\4_\5', text)
    
    # Preserve chemical formulas
    text = re.sub(r'\b([A-Z][a-z]?\d*)+\b', lambda m: m.group().replace(' ', ''), text)
    
    return text

def filter_common_terms(texts, threshold=0.10):
    vectorizer = CountVectorizer()
    X = vectorizer.fit_transform(texts)
    term_frequencies = np.sum(X.toarray(), axis=0)
    document_frequencies = np.sum(X.toarray() > 0, axis=0)
    num_documents = X.shape[0]
    
    common_terms = set()
    removed_words = {}
    for term, doc_freq in zip(vectorizer.get_feature_names_out(), document_frequencies):
        if doc_freq / num_documents > threshold:
            common_terms.add(term)
            removed_words[term] = doc_freq
    
    filtered_texts = []
    for text in texts:
        filtered_text = ' '.join([word for word in text.split() if word not in common_terms])
        filtered_texts.append(filtered_text)
    
    return filtered_texts, removed_words

def encode_texts(texts, progress=gr.Progress(), batch_size=64):
    embeddings = []
    total_batches = len(texts) // batch_size + (1 if len(texts) % batch_size != 0 else 0)
    
    for i in range(0, len(texts), batch_size):
        batch_texts = texts[i:i+batch_size]
        batch_texts = [str(text) for text in batch_texts]
        batch_embeddings = model.encode(batch_texts, show_progress_bar=True)
        embeddings.extend(batch_embeddings)
        progress((i // batch_size + 1) / total_batches, f"Processing batch {i // batch_size + 1}/{total_batches}")
    
    embeddings = np.array(embeddings)
    embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
    return embeddings

def process_file(file, progress=gr.Progress()):
    try:
        start_time = time.time()
        
        # Read CSV file
        df = pd.read_csv(file.name, encoding='utf-8')
        logging.info(f"CSV file read successfully. Shape: {df.shape}")
        
        required_columns = ['Master Patent Number', 'Abstract', 'Claims']
        missing_columns = [col for col in required_columns if col not in df.columns]
        if missing_columns:
            return None, None, None, f"Error: Missing columns: {', '.join(missing_columns)}"
        
        valid_texts = []
        valid_patent_numbers = []
        skipped_rows = []
        error_rows = []
        total_rows = len(df)
        
        for index, row in df.iterrows():
            try:
                progress((index + 1) / total_rows, f"Processing row {index + 1}/{total_rows}")
                logging.info(f"Processing row {index + 1}/{total_rows}")
                
                abstract = row['Abstract'] if pd.notna(row['Abstract']) else ''
                claims = row['Claims'] if pd.notna(row['Claims']) else ''
                
                if not abstract and not claims:
                    skipped_rows.append(row['Master Patent Number'])
                    continue
                
                # Preprocess the abstract and claims separately
                preprocessed_abstract = preprocess_text(abstract)
                preprocessed_claims = preprocess_text(claims)
                
                # Combine preprocessed abstract and claims
                combined_text = preprocessed_abstract + ' ' + preprocessed_claims
                
                valid_texts.append(combined_text)
                valid_patent_numbers.append(str(row['Master Patent Number']))
                
            except Exception as e:
                error_message = f"Error processing row {index + 1}: {str(e)}"
                logging.error(error_message)
                error_rows.append((index, row['Master Patent Number'], error_message))
                continue
        
        logging.info(f"Preprocessed abstracts and claims. Number of valid texts: {len(valid_texts)}")
        
        if skipped_rows:
            logging.info(f"Skipped {len(skipped_rows)} rows due to missing abstract and claims.")
        if error_rows:
            logging.info(f"Encountered errors in {len(error_rows)} rows.")
        
        # Filter out common terms
        logging.info("Filtering common terms...")
        filtered_texts, removed_words = filter_common_terms(valid_texts, threshold=0.10)
        
        # Generate removed words file
        removed_words_file = 'removed_words.txt'
        with open(removed_words_file, 'w', encoding='utf-8') as f:
            for word, count in sorted(removed_words.items(), key=lambda x: x[1], reverse=True):
                f.write(f"{word}: {count}\n")
        
        logging.info("Encoding texts...")
        embeddings = encode_texts(filtered_texts, progress)
        logging.info("Texts encoded successfully.")
        
        # Save embeddings and metadata
        embeddings_file = tempfile.NamedTemporaryFile(delete=False, suffix='.h5').name
        with h5py.File(embeddings_file, 'w') as f:
            f.create_dataset('embeddings', data=embeddings)
            f.create_dataset('patent_numbers', data=valid_patent_numbers)
        
        metadata_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jsonl').name
        with open(metadata_file, 'w', encoding='utf-8') as f:
            for index, (patent_number, text) in enumerate(zip(valid_patent_numbers, filtered_texts)):
                json.dump({
                    'index': index,
                    'patent_number': patent_number,
                    'text': text,
                    'embedding_index': index
                }, f, ensure_ascii=False)
                f.write('\n')
        
        end_time = time.time()
        total_time = end_time - start_time
        logging.info(f"Processing completed in {total_time:.2f} seconds.")
        
        # Save error log
        error_log_file = 'error_log.txt'
        with open(error_log_file, 'w', encoding='utf-8') as f:
            for row in error_rows:
                f.write(f"Row {row[0]}, Patent {row[1]}: {row[2]}\n")
        
        return embeddings_file, metadata_file, removed_words_file, f"Processing complete. Encoded {len(filtered_texts)} patents. Skipped {len(skipped_rows)} patents due to missing data. Errors in {len(error_rows)} rows. See error_log.txt for details."
    
    except Exception as e:
        logging.error(f"An error occurred: {e}")
        import traceback
        traceback.print_exc()
        return None, None, None, f"An error occurred: {str(e)}"

iface = gr.Interface(
    fn=process_file,
    inputs=gr.File(label="Upload a CSV file with patent data"),
    outputs=[
        gr.File(label="Patent Embeddings (HDF5)"),
        gr.File(label="Patent Metadata (JSONL)"),
        gr.File(label="Removed Words List (TXT)"),
        gr.Textbox(label="Processing Status")
    ],
    title="Patent Text Encoder",
    description="Upload a CSV file containing patent data (must include 'Master Patent Number', 'Abstract', and 'Claims' columns). The app will generate embeddings and save them along with metadata as downloadable files.",
    allow_flagging="never",
    cache_examples=False,
)

if __name__ == "__main__":
    iface.launch()