bhlewis's picture
Update app.py
1eba1e9 verified
raw
history blame
5.96 kB
import gradio as gr
import numpy as np
import h5py
import faiss
import json
from sentence_transformers import SentenceTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import re
from collections import Counter
import spacy
# Load Spacy model for advanced NLP
try:
nlp = spacy.load("en_core_web_sm")
except IOError:
print("Downloading spacy model...")
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
def load_data():
try:
with h5py.File('patent_embeddings.h5', 'r') as f:
embeddings = f['embeddings'][:]
patent_numbers = f['patent_numbers'][:]
metadata = {}
texts = []
with open('patent_metadata.jsonl', 'r') as f:
for line in f:
data = json.loads(line)
metadata[data['patent_number']] = data
texts.append(data['text'])
print(f"Embedding shape: {embeddings.shape}")
print(f"Number of patent numbers: {len(patent_numbers)}")
print(f"Number of metadata entries: {len(metadata)}")
return embeddings, patent_numbers, metadata, texts
except FileNotFoundError as e:
print(f"Error: Could not find file. {e}")
raise
except Exception as e:
print(f"An unexpected error occurred while loading data: {e}")
raise
embeddings, patent_numbers, metadata, texts = load_data()
# Load BERT model for encoding search queries
try:
model = SentenceTransformer('anferico/bert-for-patents')
except Exception as e:
print(f"Error loading anferico/bert-for-patents: {e}")
print("Falling back to a general-purpose model.")
model = SentenceTransformer('all-MiniLM-L6-v2')
# Check if the embedding dimensions match
if embeddings.shape[1] != model.get_sentence_embedding_dimension():
print("Embedding dimensions do not match. Rebuilding FAISS index.")
# Rebuild embeddings using the new model
embeddings = np.array([model.encode(text) for text in texts])
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
# Normalize embeddings for cosine similarity
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
# Create FAISS index for cosine similarity
index = faiss.IndexFlatIP(embeddings.shape[1])
index.add(embeddings)
# Create TF-IDF vectorizer
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
tfidf_matrix = tfidf_vectorizer.fit_transform(texts)
def extract_key_features(text):
# Use Spacy to extract noun phrases and key phrases
doc = nlp(text)
noun_phrases = [chunk.text.lower() for chunk in doc.noun_chunks]
feature_phrases = [sent.text.lower() for sent in doc.sents if re.search(r'(comprising|including|consisting of)', sent.text, re.IGNORECASE)]
all_features = noun_phrases + feature_phrases
return list(set(all_features))
def compare_features(query_features, patent_features):
common_features = set(query_features) & set(patent_features)
similarity_score = len(common_features) / max(len(query_features), len(patent_features))
return common_features, similarity_score
def hybrid_search(query, top_k=5):
print(f"Original query: {query}")
query_features = extract_key_features(query)
# Encode the query using the transformer model
query_embedding = model.encode([query])[0]
query_embedding = query_embedding / np.linalg.norm(query_embedding)
# Perform semantic similarity search
semantic_distances, semantic_indices = index.search(np.array([query_embedding]).astype('float32'), top_k * 2)
# Perform TF-IDF based search
query_tfidf = tfidf_vectorizer.transform([query])
tfidf_similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
tfidf_indices = tfidf_similarities.argsort()[-top_k * 2:][::-1]
# Combine and rank results
combined_results = {}
for i, idx in enumerate(semantic_indices[0]):
patent_number = patent_numbers[idx].decode('utf-8')
text = metadata[patent_number]['text']
patent_features = extract_key_features(text)
common_features, feature_similarity = compare_features(query_features, patent_features)
combined_results[patent_number] = {
'score': semantic_distances[0][i] * 1.5 + feature_similarity,
'common_features': common_features,
'text': text
}
for idx in tfidf_indices:
patent_number = patent_numbers[idx].decode('utf-8')
if patent_number not in combined_results:
text = metadata[patent_number]['text']
patent_features = extract_key_features(text)
common_features, feature_similarity = compare_features(query_features, patent_features)
combined_results[patent_number] = {
'score': tfidf_similarities[idx] + feature_similarity,
'common_features': common_features,
'text': text
}
# Sort and get top results
top_results = sorted(combined_results.items(), key=lambda x: x[1]['score'], reverse=True)[:top_k]
results = []
for patent_number, data in top_results:
result = f"Patent Number: {patent_number}\n"
result += f"Text: {data['text'][:200]}...\n"
result += f"Combined Score: {data['score']:.4f}\n"
result += f"Common Key Features: {', '.join(data['common_features'])}\n\n"
results.append(result)
return "\n".join(results)
# Create Gradio interface
iface = gr.Interface(
fn=hybrid_search,
inputs=gr.Textbox(lines=2, placeholder="Enter your patent query here..."),
outputs=gr.Textbox(lines=10, label="Search Results"),
title="Patent Similarity Search",
description="Enter a patent description to find similar patents based on key features."
)
if __name__ == "__main__":
iface.launch()