bhlewis's picture
Update app.py
5c704be verified
raw
history blame
3.9 kB
import gradio as gr
import numpy as np
import h5py
import faiss
import json
from sentence_transformers import SentenceTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
def load_data():
try:
with h5py.File('patent_embeddings.h5', 'r') as f:
embeddings = f['embeddings'][:]
patent_numbers = f['patent_numbers'][:]
metadata = {}
texts = []
with open('patent_metadata.jsonl', 'r') as f:
for line in f:
data = json.loads(line)
metadata[data['patent_number']] = data
texts.append(data['text'])
print(f"Embedding shape: {embeddings.shape}")
print(f"Number of patent numbers: {len(patent_numbers)}")
print(f"Number of metadata entries: {len(metadata)}")
return embeddings, patent_numbers, metadata, texts
except FileNotFoundError as e:
print(f"Error: Could not find file. {e}")
raise
except Exception as e:
print(f"An unexpected error occurred while loading data: {e}")
raise
embeddings, patent_numbers, metadata, texts = load_data()
# Normalize embeddings for cosine similarity
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
# Create FAISS index for cosine similarity
index = faiss.IndexFlatIP(embeddings.shape[1])
index.add(embeddings)
# Load BERT model for encoding search queries
model = SentenceTransformer('all-mpnet-base-v2')
# Create TF-IDF vectorizer
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
tfidf_matrix = tfidf_vectorizer.fit_transform(texts)
def hybrid_search(query, top_k=5):
print(f"Searching for: {query}")
# Encode the query using the transformer model
query_embedding = model.encode([query])[0]
query_embedding = query_embedding / np.linalg.norm(query_embedding)
# Perform semantic similarity search
semantic_distances, semantic_indices = index.search(np.array([query_embedding]), top_k * 2)
# Perform TF-IDF based search
query_tfidf = tfidf_vectorizer.transform([query])
tfidf_similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
tfidf_indices = tfidf_similarities.argsort()[-top_k * 2:][::-1]
# Combine and rank results
combined_results = {}
for i, idx in enumerate(semantic_indices[0]):
patent_number = patent_numbers[idx].decode('utf-8')
combined_results[patent_number] = semantic_distances[0][i]
for idx in tfidf_indices:
patent_number = patent_numbers[idx].decode('utf-8')
if patent_number in combined_results:
combined_results[patent_number] += tfidf_similarities[idx]
else:
combined_results[patent_number] = tfidf_similarities[idx]
# Sort and get top results
top_results = sorted(combined_results.items(), key=lambda x: x[1], reverse=True)[:top_k]
results = []
for patent_number, score in top_results:
if patent_number not in metadata:
print(f"Warning: Patent number {patent_number} not found in metadata")
continue
patent_data = metadata[patent_number]
result = f"Patent Number: {patent_number}\n"
text = patent_data.get('text', 'No text available')
result += f"Text: {text[:200]}...\n"
result += f"Combined Score: {score:.4f}\n\n"
results.append(result)
return "\n".join(results)
# Create Gradio interface
iface = gr.Interface(
fn=hybrid_search,
inputs=gr.Textbox(lines=2, placeholder="Enter your search query here..."),
outputs=gr.Textbox(lines=10, label="Search Results"),
title="Patent Similarity Search",
description="Enter a query to find similar patents based on their content."
)
if __name__ == "__main__":
iface.launch()