|
import gradio as gr |
|
import numpy as np |
|
import h5py |
|
import faiss |
|
import json |
|
from sentence_transformers import SentenceTransformer |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
def load_data(): |
|
try: |
|
with h5py.File('patent_embeddings.h5', 'r') as f: |
|
embeddings = f['embeddings'][:] |
|
patent_numbers = f['patent_numbers'][:] |
|
|
|
metadata = {} |
|
texts = [] |
|
with open('patent_metadata.jsonl', 'r') as f: |
|
for line in f: |
|
data = json.loads(line) |
|
metadata[data['patent_number']] = data |
|
texts.append(data['text']) |
|
|
|
print(f"Embedding shape: {embeddings.shape}") |
|
print(f"Number of patent numbers: {len(patent_numbers)}") |
|
print(f"Number of metadata entries: {len(metadata)}") |
|
|
|
return embeddings, patent_numbers, metadata, texts |
|
except FileNotFoundError as e: |
|
print(f"Error: Could not find file. {e}") |
|
raise |
|
except Exception as e: |
|
print(f"An unexpected error occurred while loading data: {e}") |
|
raise |
|
|
|
embeddings, patent_numbers, metadata, texts = load_data() |
|
|
|
|
|
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True) |
|
|
|
|
|
index = faiss.IndexFlatIP(embeddings.shape[1]) |
|
index.add(embeddings) |
|
|
|
|
|
model = SentenceTransformer('all-mpnet-base-v2') |
|
|
|
|
|
tfidf_vectorizer = TfidfVectorizer(stop_words='english') |
|
tfidf_matrix = tfidf_vectorizer.fit_transform(texts) |
|
|
|
def hybrid_search(query, top_k=5): |
|
print(f"Searching for: {query}") |
|
|
|
|
|
query_embedding = model.encode([query])[0] |
|
query_embedding = query_embedding / np.linalg.norm(query_embedding) |
|
|
|
|
|
semantic_distances, semantic_indices = index.search(np.array([query_embedding]), top_k * 2) |
|
|
|
|
|
query_tfidf = tfidf_vectorizer.transform([query]) |
|
tfidf_similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten() |
|
tfidf_indices = tfidf_similarities.argsort()[-top_k * 2:][::-1] |
|
|
|
|
|
combined_results = {} |
|
for i, idx in enumerate(semantic_indices[0]): |
|
patent_number = patent_numbers[idx].decode('utf-8') |
|
combined_results[patent_number] = semantic_distances[0][i] |
|
|
|
for idx in tfidf_indices: |
|
patent_number = patent_numbers[idx].decode('utf-8') |
|
if patent_number in combined_results: |
|
combined_results[patent_number] += tfidf_similarities[idx] |
|
else: |
|
combined_results[patent_number] = tfidf_similarities[idx] |
|
|
|
|
|
top_results = sorted(combined_results.items(), key=lambda x: x[1], reverse=True)[:top_k] |
|
|
|
results = [] |
|
for patent_number, score in top_results: |
|
if patent_number not in metadata: |
|
print(f"Warning: Patent number {patent_number} not found in metadata") |
|
continue |
|
patent_data = metadata[patent_number] |
|
result = f"Patent Number: {patent_number}\n" |
|
text = patent_data.get('text', 'No text available') |
|
result += f"Text: {text[:200]}...\n" |
|
result += f"Combined Score: {score:.4f}\n\n" |
|
results.append(result) |
|
|
|
return "\n".join(results) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=hybrid_search, |
|
inputs=gr.Textbox(lines=2, placeholder="Enter your search query here..."), |
|
outputs=gr.Textbox(lines=10, label="Search Results"), |
|
title="Patent Similarity Search", |
|
description="Enter a query to find similar patents based on their content." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|