Update app.py
Browse files
app.py
CHANGED
@@ -49,9 +49,9 @@ embeddings, patent_numbers, metadata, texts = load_data()
|
|
49 |
|
50 |
# Load BERT model for encoding search queries
|
51 |
try:
|
52 |
-
bert_model = AutoModel.from_pretrained('anferico/bert-for-patents')
|
53 |
tokenizer = AutoTokenizer.from_pretrained('anferico/bert-for-patents')
|
54 |
-
|
|
|
55 |
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
|
56 |
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
|
57 |
except Exception as e:
|
@@ -88,72 +88,4 @@ def extract_key_features(text):
|
|
88 |
|
89 |
def compare_features(query_features, patent_features):
|
90 |
common_features = set(query_features) & set(patent_features)
|
91 |
-
similarity_score = len(common_features) / max(len(query_features), len
|
92 |
-
return common_features, similarity_score
|
93 |
-
|
94 |
-
def hybrid_search(query, top_k=5):
|
95 |
-
print(f"Original query: {query}")
|
96 |
-
|
97 |
-
query_features = extract_key_features(query)
|
98 |
-
|
99 |
-
# Encode the query using the transformer model
|
100 |
-
query_embedding = model.encode([query])[0]
|
101 |
-
query_embedding = query_embedding / np.linalg.norm(query_embedding)
|
102 |
-
|
103 |
-
# Perform semantic similarity search
|
104 |
-
semantic_distances, semantic_indices = index.search(np.array([query_embedding]).astype('float32'), top_k * 2)
|
105 |
-
|
106 |
-
# Perform TF-IDF based search
|
107 |
-
query_tfidf = tfidf_vectorizer.transform([query])
|
108 |
-
tfidf_similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
|
109 |
-
tfidf_indices = tfidf_similarities.argsort()[-top_k * 2:][::-1]
|
110 |
-
|
111 |
-
# Combine and rank results
|
112 |
-
combined_results = {}
|
113 |
-
for i, idx in enumerate(semantic_indices[0]):
|
114 |
-
patent_number = patent_numbers[idx].decode('utf-8')
|
115 |
-
text = metadata[patent_number]['text']
|
116 |
-
patent_features = extract_key_features(text)
|
117 |
-
common_features, feature_similarity = compare_features(query_features, patent_features)
|
118 |
-
combined_results[patent_number] = {
|
119 |
-
'score': semantic_distances[0][i] * 1.5 + feature_similarity,
|
120 |
-
'common_features': common_features,
|
121 |
-
'text': text
|
122 |
-
}
|
123 |
-
|
124 |
-
for idx in tfidf_indices:
|
125 |
-
patent_number = patent_numbers[idx].decode('utf-8')
|
126 |
-
if patent_number not in combined_results:
|
127 |
-
text = metadata[patent_number]['text']
|
128 |
-
patent_features = extract_key_features(text)
|
129 |
-
common_features, feature_similarity = compare_features(query_features, patent_features)
|
130 |
-
combined_results[patent_number] = {
|
131 |
-
'score': tfidf_similarities[idx] + feature_similarity,
|
132 |
-
'common_features': common_features,
|
133 |
-
'text': text
|
134 |
-
}
|
135 |
-
|
136 |
-
# Sort and get top results
|
137 |
-
top_results = sorted(combined_results.items(), key=lambda x: x[1]['score'], reverse=True)[:top_k]
|
138 |
-
|
139 |
-
results = []
|
140 |
-
for patent_number, data in top_results:
|
141 |
-
result = f"Patent Number: {patent_number}\n"
|
142 |
-
result += f"Text: {data['text'][:200]}...\n"
|
143 |
-
result += f"Combined Score: {data['score']:.4f}\n"
|
144 |
-
result += f"Common Key Features: {', '.join(data['common_features'])}\n\n"
|
145 |
-
results.append(result)
|
146 |
-
|
147 |
-
return "\n".join(results)
|
148 |
-
|
149 |
-
# Create Gradio interface
|
150 |
-
iface = gr.Interface(
|
151 |
-
fn=hybrid_search,
|
152 |
-
inputs=gr.Textbox(lines=2, placeholder="Enter your patent query here..."),
|
153 |
-
outputs=gr.Textbox(lines=10, label="Search Results"),
|
154 |
-
title="Patent Similarity Search",
|
155 |
-
description="Enter a patent description to find similar patents based on key features."
|
156 |
-
)
|
157 |
-
|
158 |
-
if __name__ == "__main__":
|
159 |
-
iface.launch()
|
|
|
49 |
|
50 |
# Load BERT model for encoding search queries
|
51 |
try:
|
|
|
52 |
tokenizer = AutoTokenizer.from_pretrained('anferico/bert-for-patents')
|
53 |
+
bert_model = AutoModel.from_pretrained('anferico/bert-for-patents')
|
54 |
+
word_embedding_model = models.Transformer(model=bert_model, tokenizer=tokenizer)
|
55 |
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
|
56 |
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
|
57 |
except Exception as e:
|
|
|
88 |
|
89 |
def compare_features(query_features, patent_features):
|
90 |
common_features = set(query_features) & set(patent_features)
|
91 |
+
similarity_score = len(common_features) / max(len(query_features), len
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|