Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,12 @@ from collections import Counter
|
|
11 |
import spacy
|
12 |
|
13 |
# Load Spacy model for advanced NLP
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def load_data():
|
17 |
try:
|
@@ -79,7 +84,7 @@ def hybrid_search(query, top_k=5):
|
|
79 |
query_embedding = query_embedding / np.linalg.norm(query_embedding)
|
80 |
|
81 |
# Perform semantic similarity search
|
82 |
-
semantic_distances, semantic_indices = index.search(np.array([query_embedding]), top_k * 2)
|
83 |
|
84 |
# Perform TF-IDF based search
|
85 |
query_tfidf = tfidf_vectorizer.transform([query])
|
|
|
11 |
import spacy
|
12 |
|
13 |
# Load Spacy model for advanced NLP
|
14 |
+
try:
|
15 |
+
nlp = spacy.load("en_core_web_sm")
|
16 |
+
except IOError:
|
17 |
+
print("Downloading spacy model...")
|
18 |
+
spacy.cli.download("en_core_web_sm")
|
19 |
+
nlp = spacy.load("en_core_web_sm")
|
20 |
|
21 |
def load_data():
|
22 |
try:
|
|
|
84 |
query_embedding = query_embedding / np.linalg.norm(query_embedding)
|
85 |
|
86 |
# Perform semantic similarity search
|
87 |
+
semantic_distances, semantic_indices = index.search(np.array([query_embedding]).astype('float32'), top_k * 2)
|
88 |
|
89 |
# Perform TF-IDF based search
|
90 |
query_tfidf = tfidf_vectorizer.transform([query])
|