Update app.py
Browse files
app.py
CHANGED
@@ -1,229 +1,205 @@
|
|
1 |
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
import numpy as np
|
4 |
import h5py
|
|
|
5 |
import json
|
6 |
-
import
|
7 |
-
import
|
|
|
8 |
import re
|
9 |
-
import
|
10 |
-
import
|
11 |
-
from sentence_transformers import SentenceTransformer
|
12 |
from nltk.corpus import stopwords
|
13 |
from nltk.tokenize import word_tokenize
|
14 |
import nltk
|
15 |
-
import torch
|
16 |
-
from sklearn.feature_extraction.text import CountVectorizer
|
17 |
|
18 |
-
#
|
19 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
20 |
-
|
21 |
-
# Ensure you have downloaded the necessary NLTK data
|
22 |
nltk.download('stopwords', quiet=True)
|
23 |
nltk.download('punkt', quiet=True)
|
24 |
|
25 |
-
#
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
#
|
29 |
-
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
def
|
37 |
-
#
|
38 |
-
text =
|
39 |
-
text = re.sub(r'^\d+\.\s*', '', text, flags=re.MULTILINE)
|
40 |
-
|
41 |
-
# Convert to lowercase while preserving acronyms and units
|
42 |
-
words = text.split()
|
43 |
-
text = ' '.join(word if word.isupper() or re.match(r'^\d+(\.\d+)?[a-zA-Z]+$', word) else word.lower() for word in words)
|
44 |
|
45 |
-
# Remove
|
46 |
-
text = re.sub(
|
47 |
-
text = re.sub(r'(?<!\d)\.(?!\d)', ' ', text) # Remove periods not in numbers
|
48 |
|
49 |
-
#
|
50 |
-
text = re.sub(r'\s
|
51 |
|
52 |
# Tokenize
|
53 |
tokens = word_tokenize(text)
|
54 |
|
55 |
-
# Remove stopwords
|
56 |
stop_words = set(stopwords.words('english'))
|
57 |
-
tokens = [word for word in tokens if word
|
58 |
|
59 |
-
# Join tokens back into
|
60 |
-
|
61 |
|
62 |
-
#
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
text = re.sub(r'(\d+(\.\d+)?)(\s*to\s*)(\d+(\.\d+)?)(\s*[a-zA-Z]+)', r'\1_to_\4_\6', text)
|
67 |
-
text = re.sub(r'between\s*(\d+(\.\d+)?)(\s*and\s*)(\d+(\.\d+)?)\s*([a-zA-Z]+)', r'between_\1_and_\4_\5', text)
|
68 |
-
|
69 |
-
# Preserve chemical formulas
|
70 |
-
text = re.sub(r'\b([A-Z][a-z]?\d*)+\b', lambda m: m.group().replace(' ', ''), text)
|
71 |
-
|
72 |
-
return text
|
73 |
|
74 |
-
def
|
75 |
-
|
76 |
-
|
77 |
-
term_frequencies = np.sum(X.toarray(), axis=0)
|
78 |
-
document_frequencies = np.sum(X.toarray() > 0, axis=0)
|
79 |
-
num_documents = X.shape[0]
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
for term, doc_freq in zip(vectorizer.get_feature_names_out(), document_frequencies):
|
84 |
-
if doc_freq / num_documents > threshold:
|
85 |
-
common_terms.add(term)
|
86 |
-
removed_words[term] = doc_freq
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
filtered_text = ' '.join([word for word in text.split() if word not in common_terms])
|
91 |
-
filtered_texts.append(filtered_text)
|
92 |
|
93 |
-
return
|
94 |
|
95 |
-
def encode_texts(texts,
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
batch_texts = [str(text) for text in batch_texts]
|
102 |
-
batch_embeddings = model.encode(batch_texts, show_progress_bar=True)
|
103 |
-
embeddings.extend(batch_embeddings)
|
104 |
-
progress((i // batch_size + 1) / total_batches, f"Processing batch {i // batch_size + 1}/{total_batches}")
|
105 |
-
|
106 |
-
embeddings = np.array(embeddings)
|
107 |
-
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
108 |
-
return embeddings
|
109 |
|
110 |
-
def
|
111 |
try:
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
df = pd.read_csv(file.name, encoding='utf-8')
|
116 |
-
logging.info(f"CSV file read successfully. Shape: {df.shape}")
|
117 |
-
|
118 |
-
required_columns = ['Master Patent Number', 'Abstract', 'Claims']
|
119 |
-
missing_columns = [col for col in required_columns if col not in df.columns]
|
120 |
-
if missing_columns:
|
121 |
-
return None, None, None, f"Error: Missing columns: {', '.join(missing_columns)}"
|
122 |
-
|
123 |
-
valid_texts = []
|
124 |
-
valid_patent_numbers = []
|
125 |
-
skipped_rows = []
|
126 |
-
error_rows = []
|
127 |
-
total_rows = len(df)
|
128 |
-
|
129 |
-
for index, row in df.iterrows():
|
130 |
-
try:
|
131 |
-
progress((index + 1) / total_rows, f"Processing row {index + 1}/{total_rows}")
|
132 |
-
logging.info(f"Processing row {index + 1}/{total_rows}")
|
133 |
-
|
134 |
-
abstract = row['Abstract'] if pd.notna(row['Abstract']) else ''
|
135 |
-
claims = row['Claims'] if pd.notna(row['Claims']) else ''
|
136 |
-
|
137 |
-
if not abstract and not claims:
|
138 |
-
skipped_rows.append(row['Master Patent Number'])
|
139 |
-
continue
|
140 |
-
|
141 |
-
# Preprocess the abstract and claims separately
|
142 |
-
preprocessed_abstract = preprocess_text(abstract)
|
143 |
-
preprocessed_claims = preprocess_text(claims)
|
144 |
-
|
145 |
-
# Combine preprocessed abstract and claims
|
146 |
-
combined_text = preprocessed_abstract + ' ' + preprocessed_claims
|
147 |
-
|
148 |
-
valid_texts.append(combined_text)
|
149 |
-
valid_patent_numbers.append(str(row['Master Patent Number']))
|
150 |
-
|
151 |
-
except Exception as e:
|
152 |
-
error_message = f"Error processing row {index + 1}: {str(e)}"
|
153 |
-
logging.error(error_message)
|
154 |
-
error_rows.append((index, row['Master Patent Number'], error_message))
|
155 |
-
continue
|
156 |
-
|
157 |
-
logging.info(f"Preprocessed abstracts and claims. Number of valid texts: {len(valid_texts)}")
|
158 |
-
|
159 |
-
if skipped_rows:
|
160 |
-
logging.info(f"Skipped {len(skipped_rows)} rows due to missing abstract and claims.")
|
161 |
-
if error_rows:
|
162 |
-
logging.info(f"Encountered errors in {len(error_rows)} rows.")
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
for word, count in sorted(removed_words.items(), key=lambda x: x[1], reverse=True):
|
172 |
-
f.write(f"{word}: {count}\n")
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
# Save embeddings and metadata
|
179 |
-
embeddings_file = tempfile.NamedTemporaryFile(delete=False, suffix='.h5').name
|
180 |
-
with h5py.File(embeddings_file, 'w') as f:
|
181 |
-
f.create_dataset('embeddings', data=embeddings)
|
182 |
-
f.create_dataset('patent_numbers', data=valid_patent_numbers)
|
183 |
-
|
184 |
-
metadata_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jsonl').name
|
185 |
-
with open(metadata_file, 'w', encoding='utf-8') as f:
|
186 |
-
for index, (patent_number, text) in enumerate(zip(valid_patent_numbers, filtered_texts)):
|
187 |
-
json.dump({
|
188 |
-
'index': index,
|
189 |
-
'patent_number': patent_number,
|
190 |
-
'text': text,
|
191 |
-
'embedding_index': index
|
192 |
-
}, f, ensure_ascii=False)
|
193 |
-
f.write('\n')
|
194 |
-
|
195 |
-
end_time = time.time()
|
196 |
-
total_time = end_time - start_time
|
197 |
-
logging.info(f"Processing completed in {total_time:.2f} seconds.")
|
198 |
-
|
199 |
-
# Save error log
|
200 |
-
error_log_file = 'error_log.txt'
|
201 |
-
with open(error_log_file, 'w', encoding='utf-8') as f:
|
202 |
-
for row in error_rows:
|
203 |
-
f.write(f"Row {row[0]}, Patent {row[1]}: {row[2]}\n")
|
204 |
-
|
205 |
-
return embeddings_file, metadata_file, removed_words_file, f"Processing complete. Encoded {len(filtered_texts)} patents. Skipped {len(skipped_rows)} patents due to missing data. Errors in {len(error_rows)} rows. See error_log.txt for details."
|
206 |
-
|
207 |
except Exception as e:
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
|
|
213 |
iface = gr.Interface(
|
214 |
-
fn=
|
215 |
-
inputs=
|
216 |
-
|
217 |
-
gr.
|
218 |
-
gr.File(label="Patent Metadata (JSONL)"),
|
219 |
-
gr.File(label="Removed Words List (TXT)"),
|
220 |
-
gr.Textbox(label="Processing Status")
|
221 |
],
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
cache_examples=False,
|
226 |
)
|
227 |
|
228 |
if __name__ == "__main__":
|
229 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import numpy as np
|
3 |
import h5py
|
4 |
+
import faiss
|
5 |
import json
|
6 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForMaskedLM
|
7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
import re
|
10 |
+
from collections import Counter
|
11 |
+
import torch
|
|
|
12 |
from nltk.corpus import stopwords
|
13 |
from nltk.tokenize import word_tokenize
|
14 |
import nltk
|
|
|
|
|
15 |
|
16 |
+
# Download necessary NLTK data
|
|
|
|
|
|
|
17 |
nltk.download('stopwords', quiet=True)
|
18 |
nltk.download('punkt', quiet=True)
|
19 |
|
20 |
+
# Load BERT model for lemmatization
|
21 |
+
bert_lemma_model_name = "bert-base-uncased"
|
22 |
+
bert_lemma_tokenizer = AutoTokenizer.from_pretrained(bert_lemma_model_name)
|
23 |
+
bert_lemma_model = AutoModelForMaskedLM.from_pretrained(bert_lemma_model_name).to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
24 |
|
25 |
+
# Load BERT model for encoding search queries
|
26 |
+
bert_encode_model_name = 'anferico/bert-for-patents'
|
27 |
+
bert_encode_tokenizer = AutoTokenizer.from_pretrained(bert_encode_model_name)
|
28 |
+
bert_encode_model = AutoModel.from_pretrained(bert_encode_model_name)
|
29 |
|
30 |
+
def bert_lemmatize(text):
|
31 |
+
tokens = bert_lemma_tokenizer.tokenize(text)
|
32 |
+
input_ids = bert_lemma_tokenizer.convert_tokens_to_ids(tokens)
|
33 |
+
input_tensor = torch.tensor([input_ids]).to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
34 |
+
with torch.no_grad():
|
35 |
+
outputs = bert_lemma_model(input_tensor)
|
36 |
+
predictions = outputs.logits.argmax(dim=-1)
|
37 |
+
lemmatized_tokens = bert_lemma_tokenizer.convert_ids_to_tokens(predictions[0])
|
38 |
+
return ' '.join([token for token in lemmatized_tokens if token not in ['[CLS]', '[SEP]', '[PAD]']])
|
39 |
|
40 |
+
def preprocess_query(text):
|
41 |
+
# Convert to lowercase
|
42 |
+
text = text.lower()
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Remove any HTML tags (if present)
|
45 |
+
text = re.sub('<.*?>', '', text)
|
|
|
46 |
|
47 |
+
# Remove special characters, but keep hyphens, periods, and commas
|
48 |
+
text = re.sub(r'[^a-zA-Z0-9\s\-\.\,]', '', text)
|
49 |
|
50 |
# Tokenize
|
51 |
tokens = word_tokenize(text)
|
52 |
|
53 |
+
# Remove stopwords, but keep all other words
|
54 |
stop_words = set(stopwords.words('english'))
|
55 |
+
tokens = [word for word in tokens if word not in stop_words]
|
56 |
|
57 |
+
# Join tokens back into a string
|
58 |
+
processed_text = ' '.join(tokens)
|
59 |
|
60 |
+
# Apply BERT lemmatization
|
61 |
+
processed_text = bert_lemmatize(processed_text)
|
62 |
|
63 |
+
return processed_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
def extract_key_features(text):
|
66 |
+
# For queries, we'll just preprocess and return all non-stopword terms
|
67 |
+
processed_text = preprocess_query(text)
|
|
|
|
|
|
|
68 |
|
69 |
+
# Split the processed text into individual terms
|
70 |
+
features = processed_text.split()
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
# Remove duplicates while preserving order
|
73 |
+
features = list(dict.fromkeys(features))
|
|
|
|
|
74 |
|
75 |
+
return features
|
76 |
|
77 |
+
def encode_texts(texts, max_length=512):
|
78 |
+
inputs = bert_encode_tokenizer(texts, padding=True, truncation=True, max_length=max_length, return_tensors='pt')
|
79 |
+
with torch.no_grad():
|
80 |
+
outputs = bert_encode_model(**inputs)
|
81 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
82 |
+
return embeddings.numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
def load_data():
|
85 |
try:
|
86 |
+
with h5py.File('patent_embeddings.h5', 'r') as f:
|
87 |
+
embeddings = f['embeddings'][:]
|
88 |
+
patent_numbers = f['patent_numbers'][:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
metadata = {}
|
91 |
+
texts = []
|
92 |
+
with open('patent_metadata.jsonl', 'r') as f:
|
93 |
+
for line in f:
|
94 |
+
data = json.loads(line)
|
95 |
+
metadata[data['patent_number']] = data
|
96 |
+
texts.append(data['text'])
|
97 |
|
98 |
+
print(f"Embedding shape: {embeddings.shape}")
|
99 |
+
print(f"Number of patent numbers: {len(patent_numbers)}")
|
100 |
+
print(f"Number of metadata entries: {len(metadata)}")
|
|
|
|
|
101 |
|
102 |
+
return embeddings, patent_numbers, metadata, texts
|
103 |
+
except FileNotFoundError as e:
|
104 |
+
print(f"Error: Could not find file. {e}")
|
105 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
except Exception as e:
|
107 |
+
print(f"An unexpected error occurred while loading data: {e}")
|
108 |
+
raise
|
109 |
+
|
110 |
+
def compare_features(query_features, patent_features):
|
111 |
+
common_features = set(query_features) & set(patent_features)
|
112 |
+
similarity_score = len(common_features) / max(len(query_features), len(patent_features))
|
113 |
+
return common_features, similarity_score
|
114 |
+
|
115 |
+
def hybrid_search(query, top_k=5):
|
116 |
+
print(f"Original query: {query}")
|
117 |
+
|
118 |
+
processed_query = preprocess_query(query)
|
119 |
+
query_features = extract_key_features(processed_query)
|
120 |
+
|
121 |
+
# Encode the processed query using the transformer model
|
122 |
+
query_embedding = encode_texts([processed_query])[0]
|
123 |
+
query_embedding = query_embedding / np.linalg.norm(query_embedding)
|
124 |
+
|
125 |
+
# Perform semantic similarity search
|
126 |
+
semantic_distances, semantic_indices = index.search(np.array([query_embedding]).astype('float32'), top_k * 2)
|
127 |
+
|
128 |
+
# Perform TF-IDF based search
|
129 |
+
query_tfidf = tfidf_vectorizer.transform([processed_query])
|
130 |
+
tfidf_similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
|
131 |
+
tfidf_indices = tfidf_similarities.argsort()[-top_k * 2:][::-1]
|
132 |
+
|
133 |
+
# Combine and rank results
|
134 |
+
combined_results = {}
|
135 |
+
for i, idx in enumerate(semantic_indices[0]):
|
136 |
+
patent_number = patent_numbers[idx].decode('utf-8')
|
137 |
+
text = metadata[patent_number]['text']
|
138 |
+
patent_features = extract_key_features(text)
|
139 |
+
common_features, feature_similarity = compare_features(query_features, patent_features)
|
140 |
+
combined_results[patent_number] = {
|
141 |
+
'score': semantic_distances[0][i] * 1.0 + tfidf_similarities[idx] * 0.5 + feature_similarity,
|
142 |
+
'common_features': common_features,
|
143 |
+
'text': text
|
144 |
+
}
|
145 |
+
|
146 |
+
for idx in tfidf_indices:
|
147 |
+
patent_number = patent_numbers[idx].decode('utf-8')
|
148 |
+
if patent_number not in combined_results:
|
149 |
+
text = metadata[patent_number]['text']
|
150 |
+
patent_features = extract_key_features(text)
|
151 |
+
common_features, feature_similarity = compare_features(query_features, patent_features)
|
152 |
+
combined_results[patent_number] = {
|
153 |
+
'score': tfidf_similarities[idx] * 1.0 + feature_similarity,
|
154 |
+
'common_features': common_features,
|
155 |
+
'text': text
|
156 |
+
}
|
157 |
+
|
158 |
+
# Sort and get top results
|
159 |
+
top_results = sorted(combined_results.items(), key=lambda x: x[1]['score'], reverse=True)[:top_k]
|
160 |
+
|
161 |
+
results = []
|
162 |
+
for patent_number, data in top_results:
|
163 |
+
result = f"Patent Number: {patent_number}\n"
|
164 |
+
result += f"Text: {data['text'][:200]}...\n"
|
165 |
+
result += f"Combined Score: {data['score']:.4f}\n"
|
166 |
+
result += f"Common Key Features: {', '.join(data['common_features'])}\n\n"
|
167 |
+
results.append(result)
|
168 |
+
|
169 |
+
return "\n".join(results)
|
170 |
+
|
171 |
+
# Load data and prepare the FAISS index
|
172 |
+
embeddings, patent_numbers, metadata, texts = load_data()
|
173 |
+
|
174 |
+
# Check if the embedding dimensions match
|
175 |
+
if embeddings.shape[1] != encode_texts(["test"]).shape[1]:
|
176 |
+
print("Embedding dimensions do not match. Rebuilding FAISS index.")
|
177 |
+
# Rebuild embeddings using the new model
|
178 |
+
embeddings = encode_texts(texts)
|
179 |
+
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
180 |
+
|
181 |
+
# Normalize embeddings for cosine similarity
|
182 |
+
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
183 |
+
|
184 |
+
# Create FAISS index for cosine similarity
|
185 |
+
index = faiss.IndexFlatIP(embeddings.shape[1])
|
186 |
+
index.add(embeddings)
|
187 |
+
|
188 |
+
# Create TF-IDF vectorizer
|
189 |
+
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
|
190 |
+
tfidf_matrix = tfidf_vectorizer.fit_transform(texts)
|
191 |
|
192 |
+
# Create Gradio interface with additional input fields
|
193 |
iface = gr.Interface(
|
194 |
+
fn=hybrid_search,
|
195 |
+
inputs=[
|
196 |
+
gr.Textbox(lines=2, placeholder="Enter your patent query here..."),
|
197 |
+
gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Top K Results"),
|
|
|
|
|
|
|
198 |
],
|
199 |
+
outputs=gr.Textbox(lines=10, label="Search Results"),
|
200 |
+
title="Patent Similarity Search",
|
201 |
+
description="Enter a patent description to find similar patents based on key features."
|
|
|
202 |
)
|
203 |
|
204 |
if __name__ == "__main__":
|
205 |
+
iface.launch()
|