import gradio as gr import numpy as np import h5py import faiss import json from sentence_transformers import SentenceTransformer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity def load_data(): try: with h5py.File('patent_embeddings.h5', 'r') as f: embeddings = f['embeddings'][:] patent_numbers = f['patent_numbers'][:] metadata = {} texts = [] with open('patent_metadata.jsonl', 'r') as f: for line in f: data = json.loads(line) metadata[data['patent_number']] = data texts.append(data['text']) print(f"Embedding shape: {embeddings.shape}") print(f"Number of patent numbers: {len(patent_numbers)}") print(f"Number of metadata entries: {len(metadata)}") return embeddings, patent_numbers, metadata, texts except FileNotFoundError as e: print(f"Error: Could not find file. {e}") raise except Exception as e: print(f"An unexpected error occurred while loading data: {e}") raise embeddings, patent_numbers, metadata, texts = load_data() # Normalize embeddings for cosine similarity embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True) # Create FAISS index for cosine similarity index = faiss.IndexFlatIP(embeddings.shape[1]) index.add(embeddings) # Load BERT model for encoding search queries model = SentenceTransformer('all-mpnet-base-v2') # Create TF-IDF vectorizer tfidf_vectorizer = TfidfVectorizer(stop_words='english') tfidf_matrix = tfidf_vectorizer.fit_transform(texts) def hybrid_search(query, top_k=5): print(f"Searching for: {query}") # Encode the query using the transformer model query_embedding = model.encode([query])[0] query_embedding = query_embedding / np.linalg.norm(query_embedding) # Perform semantic similarity search semantic_distances, semantic_indices = index.search(np.array([query_embedding]), top_k * 2) # Perform TF-IDF based search query_tfidf = tfidf_vectorizer.transform([query]) tfidf_similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten() tfidf_indices = tfidf_similarities.argsort()[-top_k * 2:][::-1] # Combine and rank results combined_results = {} for i, idx in enumerate(semantic_indices[0]): patent_number = patent_numbers[idx].decode('utf-8') combined_results[patent_number] = semantic_distances[0][i] for idx in tfidf_indices: patent_number = patent_numbers[idx].decode('utf-8') if patent_number in combined_results: combined_results[patent_number] += tfidf_similarities[idx] else: combined_results[patent_number] = tfidf_similarities[idx] # Sort and get top results top_results = sorted(combined_results.items(), key=lambda x: x[1], reverse=True)[:top_k] results = [] for patent_number, score in top_results: if patent_number not in metadata: print(f"Warning: Patent number {patent_number} not found in metadata") continue patent_data = metadata[patent_number] result = f"Patent Number: {patent_number}\n" text = patent_data.get('text', 'No text available') result += f"Text: {text[:200]}...\n" result += f"Combined Score: {score:.4f}\n\n" results.append(result) return "\n".join(results) # Create Gradio interface iface = gr.Interface( fn=hybrid_search, inputs=gr.Textbox(lines=2, placeholder="Enter your search query here..."), outputs=gr.Textbox(lines=10, label="Search Results"), title="Patent Similarity Search", description="Enter a query to find similar patents based on their content." ) if __name__ == "__main__": iface.launch()