import gradio as gr import numpy as np import h5py import faiss import json from transformers import AutoTokenizer, AutoModel, AutoModelForMaskedLM from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import re from collections import Counter import torch from nltk.corpus import stopwords from nltk.tokenize import word_tokenize import nltk # Download necessary NLTK data nltk.download('stopwords', quiet=True) nltk.download('punkt', quiet=True) # Load BERT model for lemmatization bert_lemma_model_name = "bert-base-uncased" bert_lemma_tokenizer = AutoTokenizer.from_pretrained(bert_lemma_model_name) bert_lemma_model = AutoModelForMaskedLM.from_pretrained(bert_lemma_model_name).to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) # Load BERT model for encoding search queries bert_encode_model_name = 'anferico/bert-for-patents' bert_encode_tokenizer = AutoTokenizer.from_pretrained(bert_encode_model_name) bert_encode_model = AutoModel.from_pretrained(bert_encode_model_name) def bert_lemmatize(text): tokens = bert_lemma_tokenizer.tokenize(text) input_ids = bert_lemma_tokenizer.convert_tokens_to_ids(tokens) input_tensor = torch.tensor([input_ids]).to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) with torch.no_grad(): outputs = bert_lemma_model(input_tensor) predictions = outputs.logits.argmax(dim=-1) lemmatized_tokens = bert_lemma_tokenizer.convert_ids_to_tokens(predictions[0]) return ' '.join([token for token in lemmatized_tokens if token not in ['[CLS]', '[SEP]', '[PAD]']]) def preprocess_query(text): # Convert to lowercase text = text.lower() # Remove any HTML tags (if present) text = re.sub('<.*?>', '', text) # Remove special characters, but keep hyphens, periods, and commas text = re.sub(r'[^a-zA-Z0-9\s\-\.\,]', '', text) # Tokenize tokens = word_tokenize(text) # Remove stopwords, but keep all other words stop_words = set(stopwords.words('english')) tokens = [word for word in tokens if word not in stop_words] # Join tokens back into a string processed_text = ' '.join(tokens) # Apply BERT lemmatization processed_text = bert_lemmatize(processed_text) return processed_text def extract_key_features(text): # For queries, we'll just preprocess and return all non-stopword terms processed_text = preprocess_query(text) # Split the processed text into individual terms features = processed_text.split() # Remove duplicates while preserving order features = list(dict.fromkeys(features)) return features def encode_texts(texts, max_length=512): inputs = bert_encode_tokenizer(texts, padding=True, truncation=True, max_length=max_length, return_tensors='pt') with torch.no_grad(): outputs = bert_encode_model(**inputs) embeddings = outputs.last_hidden_state.mean(dim=1) return embeddings.numpy() def load_data(): try: with h5py.File('patent_embeddings.h5', 'r') as f: embeddings = f['embeddings'][:] patent_numbers = f['patent_numbers'][:] metadata = {} texts = [] with open('patent_metadata.jsonl', 'r') as f: for line in f: data = json.loads(line) metadata[data['patent_number']] = data texts.append(data['text']) print(f"Embedding shape: {embeddings.shape}") print(f"Number of patent numbers: {len(patent_numbers)}") print(f"Number of metadata entries: {len(metadata)}") return embeddings, patent_numbers, metadata, texts except FileNotFoundError as e: print(f"Error: Could not find file. {e}") raise except Exception as e: print(f"An unexpected error occurred while loading data: {e}") raise def compare_features(query_features, patent_features): common_features = set(query_features) & set(patent_features) similarity_score = len(common_features) / max(len(query_features), len(patent_features)) return common_features, similarity_score def hybrid_search(query, top_k=5): print(f"Original query: {query}") processed_query = preprocess_query(query) query_features = extract_key_features(processed_query) # Encode the processed query using the transformer model query_embedding = encode_texts([processed_query])[0] query_embedding = query_embedding / np.linalg.norm(query_embedding) # Perform semantic similarity search semantic_distances, semantic_indices = index.search(np.array([query_embedding]).astype('float32'), top_k * 2) # Perform TF-IDF based search query_tfidf = tfidf_vectorizer.transform([processed_query]) tfidf_similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten() tfidf_indices = tfidf_similarities.argsort()[-top_k * 2:][::-1] # Combine and rank results combined_results = {} for i, idx in enumerate(semantic_indices[0]): patent_number = patent_numbers[idx].decode('utf-8') text = metadata[patent_number]['text'] patent_features = extract_key_features(text) common_features, feature_similarity = compare_features(query_features, patent_features) combined_results[patent_number] = { 'score': semantic_distances[0][i] * 1.0 + tfidf_similarities[idx] * 0.5 + feature_similarity, 'common_features': common_features, 'text': text } for idx in tfidf_indices: patent_number = patent_numbers[idx].decode('utf-8') if patent_number not in combined_results: text = metadata[patent_number]['text'] patent_features = extract_key_features(text) common_features, feature_similarity = compare_features(query_features, patent_features) combined_results[patent_number] = { 'score': tfidf_similarities[idx] * 1.0 + feature_similarity, 'common_features': common_features, 'text': text } # Sort and get top results top_results = sorted(combined_results.items(), key=lambda x: x[1]['score'], reverse=True)[:top_k] results = [] for patent_number, data in top_results: result = f"Patent Number: {patent_number}\n" result += f"Text: {data['text'][:200]}...\n" result += f"Combined Score: {data['score']:.4f}\n" result += f"Common Key Features: {', '.join(data['common_features'])}\n\n" results.append(result) return "\n".join(results) # Load data and prepare the FAISS index embeddings, patent_numbers, metadata, texts = load_data() # Check if the embedding dimensions match if embeddings.shape[1] != encode_texts(["test"]).shape[1]: print("Embedding dimensions do not match. Rebuilding FAISS index.") # Rebuild embeddings using the new model embeddings = encode_texts(texts) embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True) # Normalize embeddings for cosine similarity embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True) # Create FAISS index for cosine similarity index = faiss.IndexFlatIP(embeddings.shape[1]) index.add(embeddings) # Create TF-IDF vectorizer tfidf_vectorizer = TfidfVectorizer(stop_words='english') tfidf_matrix = tfidf_vectorizer.fit_transform(texts) # Create Gradio interface with additional input fields iface = gr.Interface( fn=hybrid_search, inputs=[ gr.Textbox(lines=2, placeholder="Enter your patent query here..."), gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Top K Results"), ], outputs=gr.Textbox(lines=10, label="Search Results"), title="Patent Similarity Search", description="Enter a patent description to find similar patents based on key features." ) if __name__ == "__main__": iface.launch()