Spaces:
Sleeping
Sleeping
Commit
·
1af7ffc
1
Parent(s):
d0b4013
added frontend and gemini fallback
Browse files- backend/models/schemas.py +2 -2
- backend/requirements.txt +3 -0
- backend/routes/search.py +310 -28
- backend/services/gemini_service.py +219 -0
- backend/services/mcp_service.py +20 -2
- backend/services/qdrant_service.py +4 -1
backend/models/schemas.py
CHANGED
|
@@ -29,7 +29,7 @@ class SearchResponse(BaseModel):
|
|
| 29 |
"""Response model for search endpoint."""
|
| 30 |
response_id: str = Field(default_factory=lambda: str(uuid.uuid4()))
|
| 31 |
final_answer: str = Field(..., description="The main answer to the question")
|
| 32 |
-
source: Literal["KB", "MCP"] = Field(..., description="Source of the answer")
|
| 33 |
explanation: Optional[str] = Field(None, description="Optional explanation")
|
| 34 |
results: List[SearchResult] = Field(default_factory=list, description="Detailed search results")
|
| 35 |
metadata: dict = Field(default_factory=dict, description="Additional metadata")
|
|
@@ -50,7 +50,7 @@ class APILogEntry(BaseModel):
|
|
| 50 |
request_data: dict = Field(..., description="Request payload")
|
| 51 |
response_data: dict = Field(..., description="Response payload")
|
| 52 |
response_time_ms: float = Field(..., description="Response time in milliseconds")
|
| 53 |
-
source: Literal["KB", "MCP"] = Field(..., description="Source of the answer")
|
| 54 |
feedback_received: bool = Field(default=False, description="Whether feedback was received")
|
| 55 |
status_code: int = Field(..., description="HTTP status code")
|
| 56 |
|
|
|
|
| 29 |
"""Response model for search endpoint."""
|
| 30 |
response_id: str = Field(default_factory=lambda: str(uuid.uuid4()))
|
| 31 |
final_answer: str = Field(..., description="The main answer to the question")
|
| 32 |
+
source: Literal["KB", "MCP", "Gemini"] = Field(..., description="Source of the answer")
|
| 33 |
explanation: Optional[str] = Field(None, description="Optional explanation")
|
| 34 |
results: List[SearchResult] = Field(default_factory=list, description="Detailed search results")
|
| 35 |
metadata: dict = Field(default_factory=dict, description="Additional metadata")
|
|
|
|
| 50 |
request_data: dict = Field(..., description="Request payload")
|
| 51 |
response_data: dict = Field(..., description="Response payload")
|
| 52 |
response_time_ms: float = Field(..., description="Response time in milliseconds")
|
| 53 |
+
source: Literal["KB", "MCP", "Gemini"] = Field(..., description="Source of the answer")
|
| 54 |
feedback_received: bool = Field(default=False, description="Whether feedback was received")
|
| 55 |
status_code: int = Field(..., description="HTTP status code")
|
| 56 |
|
backend/requirements.txt
CHANGED
|
@@ -11,6 +11,9 @@ qdrant-client==1.8.0
|
|
| 11 |
# AI Guardrails
|
| 12 |
guardrails-ai==0.4.5
|
| 13 |
|
|
|
|
|
|
|
|
|
|
| 14 |
# Environment management
|
| 15 |
python-dotenv==1.0.0
|
| 16 |
|
|
|
|
| 11 |
# AI Guardrails
|
| 12 |
guardrails-ai==0.4.5
|
| 13 |
|
| 14 |
+
# Google Generative AI (Gemini)
|
| 15 |
+
google-generativeai==0.8.3
|
| 16 |
+
|
| 17 |
# Environment management
|
| 18 |
python-dotenv==1.0.0
|
| 19 |
|
backend/routes/search.py
CHANGED
|
@@ -16,6 +16,7 @@ from models.schemas import SearchRequest, SearchResponse, ErrorResponse, SearchR
|
|
| 16 |
from services.qdrant_service import QdrantService
|
| 17 |
from services.mcp_service import MCPService
|
| 18 |
from services.guardrails_service import GuardrailsService
|
|
|
|
| 19 |
|
| 20 |
router = APIRouter()
|
| 21 |
logger = structlog.get_logger()
|
|
@@ -24,15 +25,17 @@ logger = structlog.get_logger()
|
|
| 24 |
qdrant_service = None
|
| 25 |
mcp_service = None
|
| 26 |
guardrails_service = None
|
|
|
|
| 27 |
|
| 28 |
def initialize_services():
|
| 29 |
"""Initialize services on first request."""
|
| 30 |
-
global qdrant_service, mcp_service, guardrails_service
|
| 31 |
|
| 32 |
if qdrant_service is None:
|
| 33 |
qdrant_service = QdrantService()
|
| 34 |
mcp_service = MCPService()
|
| 35 |
guardrails_service = GuardrailsService()
|
|
|
|
| 36 |
|
| 37 |
@router.post("/search", response_model=SearchResponse)
|
| 38 |
async def search_math_problems(
|
|
@@ -66,49 +69,165 @@ async def search_math_problems(
|
|
| 66 |
# Step 2: Search knowledge base (Qdrant)
|
| 67 |
kb_results = await qdrant_service.search_similar(validated_question)
|
| 68 |
|
| 69 |
-
# Step 3: Determine if we need web search fallback
|
| 70 |
confidence_threshold = 0.8 # Increased from 0.5 to 0.8 for higher confidence requirement
|
| 71 |
best_score = kb_results[0].score if kb_results else 0.0
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
if best_score >= confidence_threshold:
|
| 74 |
-
# Use knowledge base results
|
| 75 |
source = "KB"
|
| 76 |
final_answer = kb_results[0].solution if kb_results else "No solution found"
|
| 77 |
-
explanation = f"
|
| 78 |
results = kb_results[:3] # Return top 3 results
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
else:
|
| 81 |
-
#
|
| 82 |
-
logger.info("Low confidence KB results,
|
| 83 |
-
best_score=best_score,
|
|
|
|
| 84 |
|
| 85 |
try:
|
| 86 |
web_results = await mcp_service.search_web(validated_question)
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
except Exception as
|
| 99 |
-
logger.error("
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
# Step 4: Validate output with guardrails
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
# Calculate response time
|
| 109 |
response_time_ms = (time.time() - start_time) * 1000
|
| 110 |
|
| 111 |
-
# Create response
|
| 112 |
response = SearchResponse(
|
| 113 |
response_id=response_id,
|
| 114 |
final_answer=validated_response,
|
|
@@ -118,12 +237,74 @@ async def search_math_problems(
|
|
| 118 |
metadata={
|
| 119 |
"confidence_score": best_score,
|
| 120 |
"threshold_used": confidence_threshold,
|
| 121 |
-
"kb_results_count": len(kb_results) if kb_results else 0
|
|
|
|
|
|
|
|
|
|
| 122 |
},
|
| 123 |
response_time_ms=response_time_ms
|
| 124 |
)
|
| 125 |
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
background_tasks.add_task(
|
| 128 |
log_api_call,
|
| 129 |
request=request.dict(),
|
|
@@ -132,10 +313,16 @@ async def search_math_problems(
|
|
| 132 |
source=source
|
| 133 |
)
|
| 134 |
|
|
|
|
| 135 |
logger.info("Search request completed successfully",
|
| 136 |
request_id=response_id,
|
| 137 |
source=source,
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
return response
|
| 141 |
|
|
@@ -168,3 +355,98 @@ async def log_api_call(
|
|
| 168 |
)
|
| 169 |
except Exception as e:
|
| 170 |
logger.warning("Failed to log API call", error=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
from services.qdrant_service import QdrantService
|
| 17 |
from services.mcp_service import MCPService
|
| 18 |
from services.guardrails_service import GuardrailsService
|
| 19 |
+
from services.gemini_service import GeminiService
|
| 20 |
|
| 21 |
router = APIRouter()
|
| 22 |
logger = structlog.get_logger()
|
|
|
|
| 25 |
qdrant_service = None
|
| 26 |
mcp_service = None
|
| 27 |
guardrails_service = None
|
| 28 |
+
gemini_service = None
|
| 29 |
|
| 30 |
def initialize_services():
|
| 31 |
"""Initialize services on first request."""
|
| 32 |
+
global qdrant_service, mcp_service, guardrails_service, gemini_service
|
| 33 |
|
| 34 |
if qdrant_service is None:
|
| 35 |
qdrant_service = QdrantService()
|
| 36 |
mcp_service = MCPService()
|
| 37 |
guardrails_service = GuardrailsService()
|
| 38 |
+
gemini_service = GeminiService()
|
| 39 |
|
| 40 |
@router.post("/search", response_model=SearchResponse)
|
| 41 |
async def search_math_problems(
|
|
|
|
| 69 |
# Step 2: Search knowledge base (Qdrant)
|
| 70 |
kb_results = await qdrant_service.search_similar(validated_question)
|
| 71 |
|
| 72 |
+
# Step 3: Determine if we need web search fallback with enhanced logic
|
| 73 |
confidence_threshold = 0.8 # Increased from 0.5 to 0.8 for higher confidence requirement
|
| 74 |
best_score = kb_results[0].score if kb_results else 0.0
|
| 75 |
|
| 76 |
+
logger.info("Evaluating search results",
|
| 77 |
+
kb_results_found=len(kb_results) if kb_results else 0,
|
| 78 |
+
best_score=best_score,
|
| 79 |
+
threshold=confidence_threshold)
|
| 80 |
+
|
| 81 |
if best_score >= confidence_threshold:
|
| 82 |
+
# Use knowledge base results - high confidence match found
|
| 83 |
source = "KB"
|
| 84 |
final_answer = kb_results[0].solution if kb_results else "No solution found"
|
| 85 |
+
explanation = f"High confidence match found (score: {best_score:.3f} ≥ {confidence_threshold})"
|
| 86 |
results = kb_results[:3] # Return top 3 results
|
| 87 |
|
| 88 |
+
logger.info("Using knowledge base results",
|
| 89 |
+
confidence_score=best_score,
|
| 90 |
+
results_returned=len(results))
|
| 91 |
+
|
| 92 |
else:
|
| 93 |
+
# First fallback: Web search via MCP
|
| 94 |
+
logger.info("Low confidence KB results, trying web search fallback",
|
| 95 |
+
best_score=best_score,
|
| 96 |
+
threshold=confidence_threshold)
|
| 97 |
|
| 98 |
try:
|
| 99 |
web_results = await mcp_service.search_web(validated_question)
|
| 100 |
+
mcp_answer = web_results.get("answer", "")
|
| 101 |
+
mcp_confidence = web_results.get("confidence", 0.6) # Default MCP confidence
|
| 102 |
+
|
| 103 |
+
logger.info("MCP web search completed",
|
| 104 |
+
answer_length=len(mcp_answer),
|
| 105 |
+
mcp_confidence=mcp_confidence)
|
| 106 |
+
|
| 107 |
+
# Check if MCP results meet confidence threshold
|
| 108 |
+
if mcp_confidence >= confidence_threshold and mcp_answer:
|
| 109 |
+
# Use MCP results - sufficient confidence
|
| 110 |
+
source = "MCP"
|
| 111 |
+
final_answer = mcp_answer
|
| 112 |
+
explanation = f"KB confidence too low ({best_score:.3f} < {confidence_threshold}), used web search (confidence: {mcp_confidence:.3f})"
|
| 113 |
+
|
| 114 |
+
results = [SearchResult(
|
| 115 |
+
problem=validated_question,
|
| 116 |
+
solution=final_answer,
|
| 117 |
+
score=mcp_confidence
|
| 118 |
+
)]
|
| 119 |
+
|
| 120 |
+
logger.info("Using MCP web search results",
|
| 121 |
+
mcp_confidence=mcp_confidence)
|
| 122 |
|
| 123 |
+
else:
|
| 124 |
+
# Second fallback: Gemini LLM when both KB and MCP have low confidence
|
| 125 |
+
logger.info("Both KB and MCP have low confidence, falling back to Gemini LLM",
|
| 126 |
+
kb_score=best_score,
|
| 127 |
+
mcp_confidence=mcp_confidence,
|
| 128 |
+
threshold=confidence_threshold)
|
| 129 |
+
|
| 130 |
+
try:
|
| 131 |
+
if gemini_service and gemini_service.is_available():
|
| 132 |
+
gemini_result = await gemini_service.solve_math_problem(validated_question)
|
| 133 |
+
|
| 134 |
+
source = "Gemini"
|
| 135 |
+
final_answer = gemini_result.get("answer", "No solution generated")
|
| 136 |
+
gemini_confidence = gemini_result.get("confidence", 0.75)
|
| 137 |
+
explanation = f"Both KB ({best_score:.3f}) and MCP ({mcp_confidence:.3f}) below threshold ({confidence_threshold}), used Gemini LLM"
|
| 138 |
+
|
| 139 |
+
results = [SearchResult(
|
| 140 |
+
problem=validated_question,
|
| 141 |
+
solution=final_answer,
|
| 142 |
+
score=gemini_confidence
|
| 143 |
+
)]
|
| 144 |
+
|
| 145 |
+
logger.info("Gemini LLM response generated successfully",
|
| 146 |
+
answer_length=len(final_answer),
|
| 147 |
+
gemini_confidence=gemini_confidence)
|
| 148 |
+
|
| 149 |
+
else:
|
| 150 |
+
# Ultimate fallback: Use best available result
|
| 151 |
+
logger.warning("Gemini service unavailable, using best available result")
|
| 152 |
+
|
| 153 |
+
if mcp_answer and len(mcp_answer) > 20: # Prefer MCP if it has substantial content
|
| 154 |
+
source = "MCP"
|
| 155 |
+
final_answer = mcp_answer
|
| 156 |
+
explanation = f"All services below threshold, using MCP result (confidence: {mcp_confidence:.3f})"
|
| 157 |
+
results = [SearchResult(problem=validated_question, solution=final_answer, score=mcp_confidence)]
|
| 158 |
+
else:
|
| 159 |
+
source = "KB"
|
| 160 |
+
final_answer = kb_results[0].solution if kb_results else "No solution available"
|
| 161 |
+
explanation = f"All services below threshold, using best KB result (score: {best_score:.3f})"
|
| 162 |
+
results = kb_results[:1] if kb_results else []
|
| 163 |
+
|
| 164 |
+
except Exception as gemini_error:
|
| 165 |
+
logger.error("Gemini LLM failed, using MCP results", error=str(gemini_error))
|
| 166 |
+
source = "MCP"
|
| 167 |
+
final_answer = mcp_answer if mcp_answer else "No solution available"
|
| 168 |
+
explanation = f"Gemini failed, used MCP result (confidence: {mcp_confidence:.3f})"
|
| 169 |
+
results = [SearchResult(problem=validated_question, solution=final_answer, score=mcp_confidence)] if mcp_answer else []
|
| 170 |
|
| 171 |
+
except Exception as mcp_error:
|
| 172 |
+
logger.error("MCP web search failed, trying Gemini fallback", error=str(mcp_error))
|
| 173 |
+
|
| 174 |
+
# If MCP fails, try Gemini directly
|
| 175 |
+
try:
|
| 176 |
+
if gemini_service and gemini_service.is_available():
|
| 177 |
+
gemini_result = await gemini_service.solve_math_problem(validated_question)
|
| 178 |
+
|
| 179 |
+
source = "Gemini"
|
| 180 |
+
final_answer = gemini_result.get("answer", "No solution generated")
|
| 181 |
+
gemini_confidence = gemini_result.get("confidence", 0.75)
|
| 182 |
+
explanation = f"KB confidence low ({best_score:.3f}), MCP failed, used Gemini LLM"
|
| 183 |
+
|
| 184 |
+
results = [SearchResult(
|
| 185 |
+
problem=validated_question,
|
| 186 |
+
solution=final_answer,
|
| 187 |
+
score=gemini_confidence
|
| 188 |
+
)]
|
| 189 |
+
|
| 190 |
+
logger.info("Gemini LLM used after MCP failure",
|
| 191 |
+
answer_length=len(final_answer))
|
| 192 |
+
|
| 193 |
+
else:
|
| 194 |
+
# Final fallback to KB results
|
| 195 |
+
logger.warning("Both MCP and Gemini failed, using KB results")
|
| 196 |
+
source = "KB"
|
| 197 |
+
final_answer = kb_results[0].solution if kb_results else "No solution available"
|
| 198 |
+
explanation = f"MCP and Gemini failed, using best KB result (score: {best_score:.3f})"
|
| 199 |
+
results = kb_results[:1] if kb_results else []
|
| 200 |
+
|
| 201 |
+
except Exception as final_error:
|
| 202 |
+
logger.error("All fallbacks failed, using KB results", error=str(final_error))
|
| 203 |
+
source = "KB"
|
| 204 |
+
final_answer = kb_results[0].solution if kb_results else "No solution available"
|
| 205 |
+
explanation = f"All services failed, using best KB result (score: {best_score:.3f})"
|
| 206 |
+
results = kb_results[:1] if kb_results else []
|
| 207 |
+
|
| 208 |
|
| 209 |
+
# Step 4: Validate output with guardrails and create comprehensive response
|
| 210 |
+
logger.info("Validating final answer with guardrails",
|
| 211 |
+
answer_length=len(final_answer),
|
| 212 |
+
source=source)
|
| 213 |
+
|
| 214 |
+
try:
|
| 215 |
+
validated_response = guardrails_service.validate_output(final_answer)
|
| 216 |
+
|
| 217 |
+
# Check if validation changed the response
|
| 218 |
+
if validated_response != final_answer:
|
| 219 |
+
logger.warning("Guardrails modified the response",
|
| 220 |
+
original_length=len(final_answer),
|
| 221 |
+
validated_length=len(validated_response))
|
| 222 |
+
|
| 223 |
+
except Exception as e:
|
| 224 |
+
logger.error("Guardrails validation failed, using original response", error=str(e))
|
| 225 |
+
validated_response = final_answer
|
| 226 |
|
| 227 |
# Calculate response time
|
| 228 |
response_time_ms = (time.time() - start_time) * 1000
|
| 229 |
|
| 230 |
+
# Create comprehensive response with enhanced metadata
|
| 231 |
response = SearchResponse(
|
| 232 |
response_id=response_id,
|
| 233 |
final_answer=validated_response,
|
|
|
|
| 237 |
metadata={
|
| 238 |
"confidence_score": best_score,
|
| 239 |
"threshold_used": confidence_threshold,
|
| 240 |
+
"kb_results_count": len(kb_results) if kb_results else 0,
|
| 241 |
+
"search_strategy": "semantic_similarity" if source == "KB" else "web_search",
|
| 242 |
+
"guardrails_applied": validated_response != final_answer,
|
| 243 |
+
"processing_time_ms": response_time_ms
|
| 244 |
},
|
| 245 |
response_time_ms=response_time_ms
|
| 246 |
)
|
| 247 |
|
| 248 |
+
logger.info("Response created successfully",
|
| 249 |
+
response_id=response_id,
|
| 250 |
+
final_answer_length=len(validated_response),
|
| 251 |
+
results_count=len(results),
|
| 252 |
+
metadata_fields=len(response.metadata))
|
| 253 |
+
|
| 254 |
+
# Step 5: Post-processing, analytics, and optimization
|
| 255 |
+
logger.info("Starting post-processing and analytics",
|
| 256 |
+
response_id=response_id,
|
| 257 |
+
source=source)
|
| 258 |
+
|
| 259 |
+
try:
|
| 260 |
+
# 5.1: Performance optimization - cache high-confidence results
|
| 261 |
+
if source == "KB" and best_score >= 0.9:
|
| 262 |
+
logger.info("High confidence result detected for potential caching",
|
| 263 |
+
confidence_score=best_score,
|
| 264 |
+
question_hash=hash(validated_question))
|
| 265 |
+
|
| 266 |
+
# 5.2: Quality assessment
|
| 267 |
+
response_quality = assess_response_quality(
|
| 268 |
+
question=validated_question,
|
| 269 |
+
answer=validated_response,
|
| 270 |
+
source=source,
|
| 271 |
+
confidence=best_score
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
# 5.3: Add quality metrics to metadata
|
| 275 |
+
response.metadata.update({
|
| 276 |
+
"response_quality": response_quality,
|
| 277 |
+
"optimization_applied": best_score >= 0.9,
|
| 278 |
+
"search_efficiency": calculate_search_efficiency(
|
| 279 |
+
kb_results_count=len(kb_results) if kb_results else 0,
|
| 280 |
+
source=source,
|
| 281 |
+
response_time_ms=response_time_ms
|
| 282 |
+
)
|
| 283 |
+
})
|
| 284 |
+
|
| 285 |
+
# 5.4: Trigger analytics and learning
|
| 286 |
+
background_tasks.add_task(
|
| 287 |
+
update_analytics,
|
| 288 |
+
question=validated_question,
|
| 289 |
+
response_data=response.dict(),
|
| 290 |
+
performance_metrics={
|
| 291 |
+
"kb_hit": source == "KB",
|
| 292 |
+
"confidence_score": best_score,
|
| 293 |
+
"response_time_ms": response_time_ms,
|
| 294 |
+
"quality_score": response_quality
|
| 295 |
+
}
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
logger.info("Post-processing completed successfully",
|
| 299 |
+
response_id=response_id,
|
| 300 |
+
quality_score=response_quality,
|
| 301 |
+
total_metadata_fields=len(response.metadata))
|
| 302 |
+
|
| 303 |
+
except Exception as e:
|
| 304 |
+
logger.warning("Post-processing failed, but response is still valid",
|
| 305 |
+
error=str(e), response_id=response_id)
|
| 306 |
+
|
| 307 |
+
# Log API call in background for analytics
|
| 308 |
background_tasks.add_task(
|
| 309 |
log_api_call,
|
| 310 |
request=request.dict(),
|
|
|
|
| 313 |
source=source
|
| 314 |
)
|
| 315 |
|
| 316 |
+
# Final completion log with comprehensive metrics
|
| 317 |
logger.info("Search request completed successfully",
|
| 318 |
request_id=response_id,
|
| 319 |
source=source,
|
| 320 |
+
confidence_score=best_score,
|
| 321 |
+
threshold_used=confidence_threshold,
|
| 322 |
+
kb_results_count=len(kb_results) if kb_results else 0,
|
| 323 |
+
final_results_count=len(results),
|
| 324 |
+
response_time_ms=response_time_ms,
|
| 325 |
+
guardrails_applied=response.metadata.get("guardrails_applied", False))
|
| 326 |
|
| 327 |
return response
|
| 328 |
|
|
|
|
| 355 |
)
|
| 356 |
except Exception as e:
|
| 357 |
logger.warning("Failed to log API call", error=str(e))
|
| 358 |
+
|
| 359 |
+
def assess_response_quality(question: str, answer: str, source: str, confidence: float) -> float:
|
| 360 |
+
"""
|
| 361 |
+
Assess the quality of the response based on multiple factors.
|
| 362 |
+
|
| 363 |
+
Returns:
|
| 364 |
+
Quality score between 0.0 and 1.0
|
| 365 |
+
"""
|
| 366 |
+
try:
|
| 367 |
+
quality_score = 0.0
|
| 368 |
+
|
| 369 |
+
# Factor 1: Answer length (not too short, not too long)
|
| 370 |
+
answer_length = len(answer.strip())
|
| 371 |
+
if 50 <= answer_length <= 2000:
|
| 372 |
+
quality_score += 0.3
|
| 373 |
+
elif answer_length > 20:
|
| 374 |
+
quality_score += 0.1
|
| 375 |
+
|
| 376 |
+
# Factor 2: Source reliability
|
| 377 |
+
if source == "KB":
|
| 378 |
+
quality_score += 0.4 * confidence # Scale by confidence
|
| 379 |
+
else:
|
| 380 |
+
quality_score += 0.3 # Web search baseline
|
| 381 |
+
|
| 382 |
+
# Factor 3: Mathematical content indicators
|
| 383 |
+
math_indicators = ['=', '+', '-', '*', '/', '^', '√', '∫', '∑', 'x', 'y', 'equation']
|
| 384 |
+
math_content = sum(1 for indicator in math_indicators if indicator in answer.lower())
|
| 385 |
+
quality_score += min(0.3, math_content * 0.05)
|
| 386 |
+
|
| 387 |
+
return min(1.0, quality_score)
|
| 388 |
+
|
| 389 |
+
except Exception as e:
|
| 390 |
+
logger.warning("Quality assessment failed", error=str(e))
|
| 391 |
+
return 0.5 # Default neutral score
|
| 392 |
+
|
| 393 |
+
def calculate_search_efficiency(kb_results_count: int, source: str, response_time_ms: float) -> float:
|
| 394 |
+
"""
|
| 395 |
+
Calculate search efficiency based on results and performance.
|
| 396 |
+
|
| 397 |
+
Returns:
|
| 398 |
+
Efficiency score between 0.0 and 1.0
|
| 399 |
+
"""
|
| 400 |
+
try:
|
| 401 |
+
efficiency = 0.0
|
| 402 |
+
|
| 403 |
+
# Factor 1: Speed (faster is better)
|
| 404 |
+
if response_time_ms < 1000:
|
| 405 |
+
efficiency += 0.5
|
| 406 |
+
elif response_time_ms < 3000:
|
| 407 |
+
efficiency += 0.3
|
| 408 |
+
else:
|
| 409 |
+
efficiency += 0.1
|
| 410 |
+
|
| 411 |
+
# Factor 2: Result availability
|
| 412 |
+
if kb_results_count > 0:
|
| 413 |
+
efficiency += 0.3
|
| 414 |
+
|
| 415 |
+
# Factor 3: Source efficiency (KB is more efficient)
|
| 416 |
+
if source == "KB":
|
| 417 |
+
efficiency += 0.2
|
| 418 |
+
|
| 419 |
+
return min(1.0, efficiency)
|
| 420 |
+
|
| 421 |
+
except Exception as e:
|
| 422 |
+
logger.warning("Efficiency calculation failed", error=str(e))
|
| 423 |
+
return 0.5
|
| 424 |
+
|
| 425 |
+
async def update_analytics(question: str, response_data: dict, performance_metrics: dict):
|
| 426 |
+
"""
|
| 427 |
+
Update analytics and learning systems with search data.
|
| 428 |
+
"""
|
| 429 |
+
try:
|
| 430 |
+
logger.info("Updating analytics",
|
| 431 |
+
kb_hit=performance_metrics.get("kb_hit", False),
|
| 432 |
+
confidence=performance_metrics.get("confidence_score", 0),
|
| 433 |
+
quality=performance_metrics.get("quality_score", 0))
|
| 434 |
+
|
| 435 |
+
# Future: Could integrate with ML systems for:
|
| 436 |
+
# - Query pattern analysis
|
| 437 |
+
# - Response quality improvement
|
| 438 |
+
# - Automatic threshold adjustment
|
| 439 |
+
# - Usage pattern detection
|
| 440 |
+
|
| 441 |
+
# For now, just comprehensive logging
|
| 442 |
+
analytics_data = {
|
| 443 |
+
"question_length": len(question),
|
| 444 |
+
"question_hash": hash(question),
|
| 445 |
+
"timestamp": time.time(),
|
| 446 |
+
**performance_metrics
|
| 447 |
+
}
|
| 448 |
+
|
| 449 |
+
logger.info("Analytics updated", **analytics_data)
|
| 450 |
+
|
| 451 |
+
except Exception as e:
|
| 452 |
+
logger.warning("Analytics update failed", error=str(e))
|
backend/services/gemini_service.py
ADDED
|
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gemini LLM service for final fallback when both KB and MCP have low confidence.
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
import re
|
| 6 |
+
import structlog
|
| 7 |
+
import google.generativeai as genai
|
| 8 |
+
from typing import Dict, Optional
|
| 9 |
+
|
| 10 |
+
logger = structlog.get_logger()
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class GeminiService:
|
| 14 |
+
"""Service for interacting with Google Gemini 2.5 Pro."""
|
| 15 |
+
|
| 16 |
+
def __init__(self):
|
| 17 |
+
"""Initialize Gemini service."""
|
| 18 |
+
self.api_key = os.getenv("GEMINI_API_KEY")
|
| 19 |
+
if not self.api_key:
|
| 20 |
+
logger.warning("GEMINI_API_KEY not found in environment variables")
|
| 21 |
+
self.client = None
|
| 22 |
+
return
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
genai.configure(api_key=self.api_key)
|
| 26 |
+
self.model = genai.GenerativeModel('gemini-2.0-flash-exp')
|
| 27 |
+
logger.info("Gemini service initialized successfully")
|
| 28 |
+
except Exception as e:
|
| 29 |
+
logger.error("Failed to initialize Gemini service", error=str(e))
|
| 30 |
+
self.client = None
|
| 31 |
+
|
| 32 |
+
async def solve_math_problem(self, question: str) -> Dict[str, any]:
|
| 33 |
+
"""
|
| 34 |
+
Solve a math problem using Gemini 2.5 Pro.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
question: The math question to solve
|
| 38 |
+
|
| 39 |
+
Returns:
|
| 40 |
+
Dict containing the solution and metadata
|
| 41 |
+
"""
|
| 42 |
+
if not self.model:
|
| 43 |
+
raise Exception("Gemini service not properly initialized")
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
# Create a comprehensive prompt for math problem solving
|
| 47 |
+
prompt = self._create_math_prompt(question)
|
| 48 |
+
|
| 49 |
+
logger.info("Sending request to Gemini", question_length=len(question))
|
| 50 |
+
|
| 51 |
+
# Generate response
|
| 52 |
+
response = await self._generate_response(prompt)
|
| 53 |
+
|
| 54 |
+
# Parse and validate the response
|
| 55 |
+
result = self._parse_response(response, question)
|
| 56 |
+
|
| 57 |
+
logger.info("Gemini response generated successfully",
|
| 58 |
+
answer_length=len(result.get("answer", "")))
|
| 59 |
+
|
| 60 |
+
return result
|
| 61 |
+
|
| 62 |
+
except Exception as e:
|
| 63 |
+
logger.error("Error in Gemini math problem solving", error=str(e))
|
| 64 |
+
raise
|
| 65 |
+
|
| 66 |
+
def _create_math_prompt(self, question: str) -> str:
|
| 67 |
+
"""Create a comprehensive prompt for math problem solving."""
|
| 68 |
+
return f"""You are an expert mathematics tutor. Solve this math problem with precision and clarity.
|
| 69 |
+
|
| 70 |
+
QUESTION: {question}
|
| 71 |
+
|
| 72 |
+
CRITICAL FORMATTING REQUIREMENT - THIS IS MANDATORY:
|
| 73 |
+
You MUST wrap every single mathematical expression in dollar signs ($). No exceptions.
|
| 74 |
+
|
| 75 |
+
RESPONSE FORMAT:
|
| 76 |
+
Solution Steps:
|
| 77 |
+
[Provide numbered steps with clear explanations]
|
| 78 |
+
|
| 79 |
+
Final Answer:
|
| 80 |
+
[State the final answer clearly and concisely]
|
| 81 |
+
|
| 82 |
+
Verification (if applicable):
|
| 83 |
+
[Show verification using an alternative method or substitution]
|
| 84 |
+
|
| 85 |
+
MANDATORY MATH FORMATTING EXAMPLES - COPY THIS STYLE EXACTLY:
|
| 86 |
+
- Write: "For the term $3x^2$, we have $a = 3$ and $n = 2$"
|
| 87 |
+
- Write: "The function $f(x) = 3x^2 + 2x - 1$"
|
| 88 |
+
- Write: "The derivative is $f'(x) = 6x + 2$"
|
| 89 |
+
- Write: "Apply the power rule: if $f(x) = ax^n$, then $f'(x) = nax^{{n-1}}$"
|
| 90 |
+
|
| 91 |
+
NEVER WRITE MATH WITHOUT DOLLAR SIGNS:
|
| 92 |
+
- WRONG: "For the term 3x^2, we have a = 3 and n = 2"
|
| 93 |
+
- WRONG: "The function f(x) = 3x^2 + 2x - 1"
|
| 94 |
+
- WRONG: "The derivative is f'(x) = 6x + 2"
|
| 95 |
+
|
| 96 |
+
EVERYTHING mathematical must have $ around it: variables, numbers in math context, equations, expressions.
|
| 97 |
+
|
| 98 |
+
Begin your solution now, remembering to wrap ALL math in $ signs:"""
|
| 99 |
+
|
| 100 |
+
async def _generate_response(self, prompt: str) -> str:
|
| 101 |
+
"""Generate response from Gemini."""
|
| 102 |
+
try:
|
| 103 |
+
# Generate content using the configured model
|
| 104 |
+
response = self.model.generate_content(prompt)
|
| 105 |
+
|
| 106 |
+
if not response.text:
|
| 107 |
+
raise Exception("Empty response from Gemini")
|
| 108 |
+
|
| 109 |
+
return response.text
|
| 110 |
+
|
| 111 |
+
except Exception as e:
|
| 112 |
+
logger.error("Error generating Gemini response", error=str(e))
|
| 113 |
+
raise
|
| 114 |
+
|
| 115 |
+
def _parse_response(self, response: str, original_question: str) -> Dict[str, any]:
|
| 116 |
+
"""Parse Gemini response into structured format."""
|
| 117 |
+
try:
|
| 118 |
+
# Clean up the response
|
| 119 |
+
cleaned_response = self._clean_response(response)
|
| 120 |
+
|
| 121 |
+
return {
|
| 122 |
+
"answer": cleaned_response,
|
| 123 |
+
"confidence": 0.85, # Increased confidence for better structured responses
|
| 124 |
+
"source": "Gemini",
|
| 125 |
+
"original_question": original_question,
|
| 126 |
+
"response_length": len(cleaned_response),
|
| 127 |
+
"model": "gemini-2.0-flash-exp"
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
except Exception as e:
|
| 131 |
+
logger.error("Error parsing Gemini response", error=str(e))
|
| 132 |
+
return {
|
| 133 |
+
"answer": response.strip(),
|
| 134 |
+
"confidence": 0.6,
|
| 135 |
+
"source": "Gemini",
|
| 136 |
+
"original_question": original_question,
|
| 137 |
+
"error": "Failed to parse response properly"
|
| 138 |
+
}
|
| 139 |
+
|
| 140 |
+
def _clean_response(self, response: str) -> str:
|
| 141 |
+
"""Clean and format the Gemini response."""
|
| 142 |
+
try:
|
| 143 |
+
# Remove excessive introductory phrases
|
| 144 |
+
response = response.strip()
|
| 145 |
+
|
| 146 |
+
# Remove common verbose openings
|
| 147 |
+
verbose_openings = [
|
| 148 |
+
"Okay, let's",
|
| 149 |
+
"Alright, let's",
|
| 150 |
+
"Sure, let's",
|
| 151 |
+
"Let's solve",
|
| 152 |
+
"I'll solve",
|
| 153 |
+
"Here's how to"
|
| 154 |
+
]
|
| 155 |
+
|
| 156 |
+
for opening in verbose_openings:
|
| 157 |
+
if response.lower().startswith(opening.lower()):
|
| 158 |
+
# Find the first period or newline and start from there
|
| 159 |
+
first_break = min(
|
| 160 |
+
response.find('.') + 1 if response.find('.') != -1 else len(response),
|
| 161 |
+
response.find('\n') if response.find('\n') != -1 else len(response)
|
| 162 |
+
)
|
| 163 |
+
response = response[first_break:].strip()
|
| 164 |
+
break
|
| 165 |
+
|
| 166 |
+
# Convert LaTeX delimiters to standard format for frontend
|
| 167 |
+
response = response.replace('\\(', '$').replace('\\)', '$')
|
| 168 |
+
response = response.replace('\\[', '$$').replace('\\]', '$$')
|
| 169 |
+
|
| 170 |
+
# Remove markdown formatting
|
| 171 |
+
response = response.replace("**Final Answer:**", "Final Answer:")
|
| 172 |
+
response = response.replace("**Final Answer**", "Final Answer:")
|
| 173 |
+
response = response.replace("## Final Answer", "Final Answer:")
|
| 174 |
+
response = response.replace("## Solution Steps", "Solution Steps:")
|
| 175 |
+
response = response.replace("## Verification", "Verification:")
|
| 176 |
+
|
| 177 |
+
# Clean up excessive asterisks and markdown formatting
|
| 178 |
+
response = re.sub(r'\*{2,}', '', response) # Remove all ** formatting
|
| 179 |
+
response = re.sub(r'#{2,}\s*', '', response) # Remove ## headers
|
| 180 |
+
|
| 181 |
+
# Improve section formatting
|
| 182 |
+
response = re.sub(r'^(\d+\.\s)', r'\n\1', response, flags=re.MULTILINE) # Add newlines before numbered steps
|
| 183 |
+
response = re.sub(r'\n\s*\n\s*\n', '\n\n', response) # Remove excessive line breaks
|
| 184 |
+
|
| 185 |
+
return response.strip()
|
| 186 |
+
|
| 187 |
+
except Exception as e:
|
| 188 |
+
logger.warning("Failed to clean response, returning original", error=str(e))
|
| 189 |
+
return response.strip()
|
| 190 |
+
|
| 191 |
+
def is_available(self) -> bool:
|
| 192 |
+
"""Check if Gemini service is available."""
|
| 193 |
+
return self.model is not None
|
| 194 |
+
|
| 195 |
+
async def health_check(self) -> Dict[str, any]:
|
| 196 |
+
"""Perform a health check on the Gemini service."""
|
| 197 |
+
if not self.model:
|
| 198 |
+
return {
|
| 199 |
+
"status": "unhealthy",
|
| 200 |
+
"error": "Gemini service not initialized"
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
try:
|
| 204 |
+
# Test with a simple math problem
|
| 205 |
+
test_response = await self.solve_math_problem("What is 2 + 2?")
|
| 206 |
+
|
| 207 |
+
return {
|
| 208 |
+
"status": "healthy",
|
| 209 |
+
"model": "gemini-2.0-flash-exp",
|
| 210 |
+
"test_response_length": len(test_response.get("answer", "")),
|
| 211 |
+
"api_key_configured": bool(self.api_key)
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
except Exception as e:
|
| 215 |
+
return {
|
| 216 |
+
"status": "unhealthy",
|
| 217 |
+
"error": str(e),
|
| 218 |
+
"api_key_configured": bool(self.api_key)
|
| 219 |
+
}
|
backend/services/mcp_service.py
CHANGED
|
@@ -36,20 +36,38 @@ class MCPService:
|
|
| 36 |
# Simulate web search delay
|
| 37 |
await asyncio.sleep(0.5)
|
| 38 |
|
| 39 |
-
# Mock response based on question type
|
|
|
|
|
|
|
| 40 |
if any(keyword in question.lower() for keyword in ['derivative', 'integral', 'calculus']):
|
| 41 |
answer = f"Based on web search: This appears to be a calculus problem. {question} involves applying standard calculus techniques. Consider using the fundamental theorem of calculus or integration by parts."
|
|
|
|
| 42 |
elif any(keyword in question.lower() for keyword in ['algebra', 'equation', 'solve']):
|
| 43 |
answer = f"Based on web search: This is an algebraic problem. {question} can be solved using algebraic manipulation and equation solving techniques."
|
|
|
|
| 44 |
elif any(keyword in question.lower() for keyword in ['geometry', 'triangle', 'circle']):
|
| 45 |
answer = f"Based on web search: This is a geometry problem. {question} involves geometric principles and may require knowledge of shapes, areas, or angles."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
else:
|
| 47 |
answer = f"Based on web search: {question} is a mathematical problem that may require breaking down into smaller steps and applying relevant mathematical concepts."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
result = {
|
| 50 |
"answer": answer,
|
| 51 |
"source": "web_search",
|
| 52 |
-
"confidence":
|
| 53 |
"search_query": question,
|
| 54 |
"results_count": 1
|
| 55 |
}
|
|
|
|
| 36 |
# Simulate web search delay
|
| 37 |
await asyncio.sleep(0.5)
|
| 38 |
|
| 39 |
+
# Mock response based on question type with realistic confidence scoring
|
| 40 |
+
confidence_score = 0.6 # Default confidence
|
| 41 |
+
|
| 42 |
if any(keyword in question.lower() for keyword in ['derivative', 'integral', 'calculus']):
|
| 43 |
answer = f"Based on web search: This appears to be a calculus problem. {question} involves applying standard calculus techniques. Consider using the fundamental theorem of calculus or integration by parts."
|
| 44 |
+
confidence_score = 0.75 # Higher confidence for calculus
|
| 45 |
elif any(keyword in question.lower() for keyword in ['algebra', 'equation', 'solve']):
|
| 46 |
answer = f"Based on web search: This is an algebraic problem. {question} can be solved using algebraic manipulation and equation solving techniques."
|
| 47 |
+
confidence_score = 0.7 # Good confidence for algebra
|
| 48 |
elif any(keyword in question.lower() for keyword in ['geometry', 'triangle', 'circle']):
|
| 49 |
answer = f"Based on web search: This is a geometry problem. {question} involves geometric principles and may require knowledge of shapes, areas, or angles."
|
| 50 |
+
confidence_score = 0.65 # Moderate confidence for geometry
|
| 51 |
+
elif any(keyword in question.lower() for keyword in ['statistics', 'probability', 'mean', 'standard deviation']):
|
| 52 |
+
answer = f"Based on web search: This is a statistics/probability problem. {question} requires understanding of statistical concepts and may involve data analysis."
|
| 53 |
+
confidence_score = 0.72 # Good confidence for stats
|
| 54 |
else:
|
| 55 |
answer = f"Based on web search: {question} is a mathematical problem that may require breaking down into smaller steps and applying relevant mathematical concepts."
|
| 56 |
+
confidence_score = 0.55 # Lower confidence for unknown types
|
| 57 |
+
|
| 58 |
+
# Adjust confidence based on question length and complexity
|
| 59 |
+
if len(question) > 100:
|
| 60 |
+
confidence_score += 0.05 # Slightly higher for detailed questions
|
| 61 |
+
if '=' in question and any(op in question for op in ['+', '-', '*', '/', '^']):
|
| 62 |
+
confidence_score += 0.1 # Higher for equations with operators
|
| 63 |
+
|
| 64 |
+
# Cap confidence to ensure it's below KB threshold for testing fallback
|
| 65 |
+
confidence_score = min(confidence_score, 0.79) # Always below 0.8 threshold
|
| 66 |
|
| 67 |
result = {
|
| 68 |
"answer": answer,
|
| 69 |
"source": "web_search",
|
| 70 |
+
"confidence": confidence_score,
|
| 71 |
"search_query": question,
|
| 72 |
"results_count": 1
|
| 73 |
}
|
backend/services/qdrant_service.py
CHANGED
|
@@ -34,7 +34,10 @@ class QdrantService:
|
|
| 34 |
try:
|
| 35 |
import os
|
| 36 |
from dotenv import load_dotenv
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
# Qdrant configuration from environment variables
|
| 40 |
qdrant_config = {
|
|
|
|
| 34 |
try:
|
| 35 |
import os
|
| 36 |
from dotenv import load_dotenv
|
| 37 |
+
|
| 38 |
+
# Load .env from project root (3 levels up from services)
|
| 39 |
+
env_path = Path(__file__).parent.parent.parent / '.env'
|
| 40 |
+
load_dotenv(env_path)
|
| 41 |
|
| 42 |
# Qdrant configuration from environment variables
|
| 43 |
qdrant_config = {
|