|
import streamlit as st |
|
from transformers import pipeline |
|
from PIL import Image |
|
from datetime import time as t |
|
import time |
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
|
|
st.title("USC GPT - Find the perfect class") |
|
|
|
class_time = st.slider( |
|
"Filter Class Times:", |
|
value=(t(11, 30), t(12, 45))) |
|
|
|
|
|
|
|
units = st.slider( |
|
"Number of units", |
|
1, 4, |
|
value = (1, 4) |
|
) |
|
|
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
if prompt := st.chat_input("What kind of class are you looking for?"): |
|
|
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
|
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
|
|
|
|
|
|
|
|
|
|
with st.chat_message("assistant"): |
|
message_placeholder = st.empty() |
|
full_response = "" |
|
assistant_response = "Hello there! How can I assist you today?" |
|
|
|
for chunk in assistant_response.split(): |
|
full_response += chunk + " " |
|
time.sleep(0.05) |
|
|
|
message_placeholder.markdown(full_response + "β") |
|
message_placeholder.markdown(full_response) |
|
|
|
st.session_state.messages.append({"role": "assistant", "content": full_response}) |