Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -30,25 +30,31 @@ embed_model = HuggingFaceBgeEmbeddings(
|
|
30 |
encode_kwargs={'normalize_embeddings': True}
|
31 |
)
|
32 |
|
33 |
-
model_name = "google/gemma-2-2b-it"#"prithivMLmods/Llama-3.2-3B-GGUF"
|
34 |
-
|
35 |
-
model = AutoModelForCausalLM.from_pretrained(
|
36 |
-
model_name,
|
37 |
-
trust_remote_code=True,
|
38 |
-
use_auth_token=True
|
39 |
-
)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
)
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
53 |
|
54 |
|
@@ -68,7 +74,7 @@ class RAGConfig:
|
|
68 |
chunk_size: int = 500
|
69 |
chunk_overlap: int = 100
|
70 |
retriever_k: int = 3
|
71 |
-
persist_directory: str = "./chroma_db"
|
72 |
|
73 |
class AdvancedRAGSystem:
|
74 |
"""Advanced RAG System with improved error handling and type safety"""
|
@@ -96,11 +102,12 @@ Context:
|
|
96 |
self.config = config or RAGConfig()
|
97 |
self.vector_store: Optional[Chroma] = None
|
98 |
self.last_context: Optional[str] = None
|
99 |
-
|
100 |
-
self.
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
104 |
|
105 |
def _validate_file(self, file_path: Path) -> bool:
|
106 |
"""Validate if the file is of supported format and exists"""
|
@@ -184,20 +191,41 @@ Context:
|
|
184 |
retrieved_docs = retriever.get_relevant_documents(question)
|
185 |
context = self._format_context(retrieved_docs)
|
186 |
self.last_context = context
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
self.prompt.format(
|
191 |
-
context=context,
|
192 |
-
question=question
|
193 |
-
)
|
194 |
-
)
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
except Exception as e:
|
203 |
error_msg = f"Error during query processing: {str(e)}"
|
@@ -221,16 +249,17 @@ def create_gradio_interface(rag_system: AdvancedRAGSystem) -> gr.Blocks:
|
|
221 |
except Exception as e:
|
222 |
return f"Error: {str(e)}"
|
223 |
|
224 |
-
def
|
225 |
"""Query system and update history with error handling"""
|
226 |
try:
|
227 |
-
|
228 |
-
|
229 |
-
result["answer"],
|
230 |
-
f"Last context used ({result['source_documents']} documents):\n\n{result['context']}"
|
231 |
-
)
|
232 |
except Exception as e:
|
233 |
-
|
|
|
|
|
|
|
|
|
234 |
with gr.Blocks(title="Advanced RAG System") as demo:
|
235 |
gr.Markdown("# Advanced RAG System with PDF Processing")
|
236 |
|
@@ -286,9 +315,15 @@ def create_gradio_interface(rag_system: AdvancedRAGSystem) -> gr.Blocks:
|
|
286 |
)
|
287 |
|
288 |
query_button.click(
|
289 |
-
fn=
|
290 |
inputs=[question_input],
|
291 |
-
outputs=[answer_output
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
)
|
293 |
|
294 |
return demo
|
|
|
30 |
encode_kwargs={'normalize_embeddings': True}
|
31 |
)
|
32 |
|
33 |
+
model_name = "meta-llama/Llama-3.2-3B-Instruct"#"google/gemma-2-2b-it"#"prithivMLmods/Llama-3.2-3B-GGUF"
|
34 |
+
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
client = InferenceClient(model_name)
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
41 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
42 |
+
# model_name,
|
43 |
+
# trust_remote_code=True,
|
44 |
+
# use_auth_token=True
|
45 |
+
# )
|
46 |
+
|
47 |
+
# pipe = pipeline(
|
48 |
+
# "text-generation",
|
49 |
+
# model=model,
|
50 |
+
# tokenizer=tokenizer,
|
51 |
+
# max_new_tokens=2048*2,
|
52 |
+
# temperature=0.3,
|
53 |
+
# top_p=0.95,
|
54 |
+
# generation_config=model.generation_config
|
55 |
+
# # repetition_penalty=1.15
|
56 |
+
# )
|
57 |
+
# llm = HuggingFacePipeline(pipeline=pipe)
|
58 |
# model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
59 |
|
60 |
|
|
|
74 |
chunk_size: int = 500
|
75 |
chunk_overlap: int = 100
|
76 |
retriever_k: int = 3
|
77 |
+
# persist_directory: str = "./chroma_db"
|
78 |
|
79 |
class AdvancedRAGSystem:
|
80 |
"""Advanced RAG System with improved error handling and type safety"""
|
|
|
102 |
self.config = config or RAGConfig()
|
103 |
self.vector_store: Optional[Chroma] = None
|
104 |
self.last_context: Optional[str] = None
|
105 |
+
self.context = None
|
106 |
+
self.source_documents = 0
|
107 |
+
# self.prompt = PromptTemplate(
|
108 |
+
# template=self.DEFAULT_TEMPLATE,
|
109 |
+
# input_variables=["context", "question"]
|
110 |
+
# )
|
111 |
|
112 |
def _validate_file(self, file_path: Path) -> bool:
|
113 |
"""Validate if the file is of supported format and exists"""
|
|
|
191 |
retrieved_docs = retriever.get_relevant_documents(question)
|
192 |
context = self._format_context(retrieved_docs)
|
193 |
self.last_context = context
|
194 |
+
messages = [
|
195 |
+
{
|
196 |
+
"role":"system",
|
197 |
+
"content":f"""<|start_header_id|>system<|end_header_id|>
|
198 |
+
You are a helpful assistant. Use the following pieces of context to answer the question at the end.
|
199 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
200 |
|
201 |
+
Context:
|
202 |
+
{context}
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
+
<|eot_id|><|start_header_id|>user<|end_header_id|>
|
205 |
+
{question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
206 |
+
"""
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"role": "user",
|
210 |
+
"content": "What is the capital of France?"
|
211 |
+
}
|
212 |
+
]
|
213 |
+
self.context = context
|
214 |
+
self.source_documents = len(retrieved_docs)
|
215 |
+
# Generate response using LLM ###########
|
216 |
+
# response = self.llm.invoke(
|
217 |
+
# self.prompt.format(
|
218 |
+
# context=context,
|
219 |
+
# question=question
|
220 |
+
# )
|
221 |
+
# )
|
222 |
+
|
223 |
+
return client.chat.completions.create(
|
224 |
+
model=model_name,
|
225 |
+
messages=messages,
|
226 |
+
max_tokens=500,
|
227 |
+
stream=True
|
228 |
+
)
|
229 |
|
230 |
except Exception as e:
|
231 |
error_msg = f"Error during query processing: {str(e)}"
|
|
|
249 |
except Exception as e:
|
250 |
return f"Error: {str(e)}"
|
251 |
|
252 |
+
def query_fin(question):
|
253 |
"""Query system and update history with error handling"""
|
254 |
try:
|
255 |
+
for x in rag_system.query(question):
|
256 |
+
yield x.choices[0].delta.content
|
|
|
|
|
|
|
257 |
except Exception as e:
|
258 |
+
pass
|
259 |
+
|
260 |
+
def update_history(question: str):
|
261 |
+
return f"Last context used ({self.source_documents} documents):\n\n{self.context}"
|
262 |
+
|
263 |
with gr.Blocks(title="Advanced RAG System") as demo:
|
264 |
gr.Markdown("# Advanced RAG System with PDF Processing")
|
265 |
|
|
|
315 |
)
|
316 |
|
317 |
query_button.click(
|
318 |
+
fn=query_fin,
|
319 |
inputs=[question_input],
|
320 |
+
outputs=[answer_output]
|
321 |
+
)
|
322 |
+
|
323 |
+
query_button.click(
|
324 |
+
fn=update_history,
|
325 |
+
inputs=[],
|
326 |
+
outputs=[history_output]
|
327 |
)
|
328 |
|
329 |
return demo
|