File size: 3,892 Bytes
42e3a78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import json

import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset

from model import NeuralNet
from nltk_utils import bag_of_words, stem, tokenize

with open("intents.json") as f:
    intents = json.load(f)

all_words = []
tags = []
xy = []
# loop through each sentence in our intents patterns
for intent in intents["intents"]:
    tag = intent["tag"]
    # add to tag list
    tags.append(tag)
    for pattern in intent["patterns"]:
        # tokenize each word in the sentence
        w = tokenize(pattern)
        # add to our words list
        all_words.extend(w)
        # add to xy pair
        xy.append((w, tag))
        AUGMENT = False
        if "Bibek" in pattern:
            pattern = pattern.replace("Bibek", "he")
            AUGMENT = True
        elif "bibek" in pattern:
            pattern = pattern.replace("bibek", "he")
            AUGMENT = True
        elif "BIBEK" in pattern:
            pattern = pattern.replace("BIBEK", "he")
            AUGMENT = True
        if AUGMENT:
            w = tokenize(pattern)
            all_words.extend(w)
            xy.append((w, tag))

# stem and lower each word
ignore_words = ["?", ".", "!"]
all_words = [stem(w) for w in all_words if w not in ignore_words]
# remove duplicates and sort
all_words = sorted(set(all_words))
tags = sorted(set(tags))

print(len(xy), "patterns")
print(len(tags), "tags:", tags)
print(len(all_words), "unique stemmed words:", all_words)

# create training data
X_train = []
y_train = []
for (pattern_sentence, tag) in xy:
    # X: bag of words for each pattern_sentence
    bag = bag_of_words(pattern_sentence, all_words)
    X_train.append(bag)
    # y: PyTorch CrossEntropyLoss needs only class labels, not one-hot
    label = tags.index(tag)
    y_train.append(label)

X_train = np.array(X_train)
y_train = np.array(y_train)

# Hyper-parameters
num_epochs = 1000
batch_size = 32
learning_rate = 0.001
input_size = len(X_train[0])
hidden_size = 64
num_heads = 8
num_layer = 6
output_size = len(tags)
print(input_size, output_size)


class ChatDataset(Dataset):
    """
    Creates PyTorch dataset to automatically iterate and do batch training
    """

    def __init__(self):
        self.n_samples = len(X_train)
        self.x_data = X_train
        self.y_data = y_train

    # support indexing such that dataset[i] can be used to get i-th sample
    def __getitem__(self, index):
        return self.x_data[index], self.y_data[index]

    # we can call len(dataset) to return the size
    def __len__(self):
        return self.n_samples


dataset = ChatDataset()
train_loader = DataLoader(
    dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=0
)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = NeuralNet(input_size, hidden_size, output_size).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# Train the model
for epoch in range(num_epochs):
    for (words, labels) in train_loader:
        words = words.to(device)
        labels = labels.to(dtype=torch.long).to(device)

        # Forward pass
        outputs = model(words)
        # if y would be one-hot, we must apply
        # labels = torch.max(labels, 1)[1]
        loss = criterion(outputs, labels)

        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    if (epoch + 1) % 100 == 0:
        print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}")


print(f"final loss: {loss.item():.4f}")

data = {
    "model_state": model.state_dict(),
    "input_size": input_size,
    "hidden_size": hidden_size,
    "output_size": output_size,
    "all_words": all_words,
    "tags": tags,
}

FILE = "data.pth"
torch.save(data, FILE)

print(f"training complete. file saved to {FILE}")