File size: 1,617 Bytes
51971b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
import torchvision.transforms as transforms
import cv2
from PIL import Image
from transformers import BigBirdForImageCaptioning, BigBirdTokenizer
import pafy

# URL of the YouTube video
video_url = 'https://www.youtube.com/watch?v=VIDEO_ID'

# Get the best available stream for the video
video = pafy.new(video_url)
best = video.getbest(preftype='mp4')

# Set up the Hugging Face model and tokenizer
model = BigBirdForImageCaptioning.from_pretrained('bigbird-roberta-image-captioning')
tokenizer = BigBirdTokenizer.from_pretrained('bigbird-roberta-image-captioning')

# Set up the image transformation pipeline
image_transforms = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

# Open the video file
cap = cv2.VideoCapture(best.url)

# Loop through the frames of the video
while cap.isOpened():
    # Read the next frame
    ret, frame = cap.read()

    # If we've reached the end of the video, break out of the loop
    if not ret:
        break

    # Convert the frame to a PIL image and apply the image transformation pipeline
    image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
    image = image_transforms(image)

    # Add batch dimension to the image tensor
    image = image.unsqueeze(0)

    # Generate a caption for the image using the model and tokenizer
    caption_ids = model.generate(image)
    caption = tokenizer.decode(caption_ids[0], skip_special_tokens=True)

    # Print the caption for the frame
    print(caption)

# Release the video file
cap.release()