Spaces:
Runtime error
Runtime error
Init project
Browse files- app.py +15 -0
- model.py +107 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
from model import SegmentationTool
|
4 |
+
|
5 |
+
seg_tool = SegmentationTool()
|
6 |
+
|
7 |
+
|
8 |
+
def segment(input_img):
|
9 |
+
mask_image, transparent_mask_image, image, items, room = seg_tool.get_mask(input_img)
|
10 |
+
return mask_image
|
11 |
+
|
12 |
+
|
13 |
+
demo = gr.Interface(segment, gr.Image(), "image")
|
14 |
+
if __name__ == "__main__":
|
15 |
+
demo.launch()
|
model.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
5 |
+
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
|
6 |
+
|
7 |
+
|
8 |
+
class SegmentationTool:
|
9 |
+
|
10 |
+
def __init__(self,
|
11 |
+
segmentation_version='nvidia/segformer-b5-finetuned-ade-640-640'):
|
12 |
+
|
13 |
+
self.segmentation_version = segmentation_version
|
14 |
+
|
15 |
+
if segmentation_version == "openmmlab/upernet-convnext-tiny":
|
16 |
+
self.feature_extractor = AutoImageProcessor.from_pretrained(self.segmentation_version)
|
17 |
+
self.segmentation_model = UperNetForSemanticSegmentation.from_pretrained(self.segmentation_version)
|
18 |
+
elif segmentation_version == "nvidia/segformer-b5-finetuned-ade-640-640":
|
19 |
+
self.feature_extractor = SegformerFeatureExtractor.from_pretrained(self.segmentation_version)
|
20 |
+
self.segmentation_model = SegformerForSemanticSegmentation.from_pretrained(self.segmentation_version)
|
21 |
+
|
22 |
+
def _predict(self, image):
|
23 |
+
inputs = self.feature_extractor(images=image, return_tensors="pt")
|
24 |
+
outputs = self.segmentation_model(**inputs)
|
25 |
+
prediction = \
|
26 |
+
self.feature_extractor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
27 |
+
return prediction
|
28 |
+
|
29 |
+
def _save_mask(self, prediction_array, mask_items=[]):
|
30 |
+
mask = np.zeros_like(prediction_array, dtype=np.uint8)
|
31 |
+
|
32 |
+
mask[np.isin(prediction_array, mask_items)] = 0
|
33 |
+
mask[~np.isin(prediction_array, mask_items)] = 255
|
34 |
+
|
35 |
+
buffer_size = 10
|
36 |
+
|
37 |
+
# Dilate the binary image
|
38 |
+
kernel = np.ones((buffer_size, buffer_size), np.uint8)
|
39 |
+
dilated_image = cv2.dilate(mask, kernel, iterations=1)
|
40 |
+
|
41 |
+
# Subtract the original binary image
|
42 |
+
buffer_area = dilated_image - mask
|
43 |
+
|
44 |
+
# Apply buffer area to the original image
|
45 |
+
mask = cv2.bitwise_or(mask, buffer_area)
|
46 |
+
|
47 |
+
# # # Create a PIL Image object from the mask
|
48 |
+
mask_image = Image.fromarray(mask, mode='L')
|
49 |
+
# display(mask_image)
|
50 |
+
|
51 |
+
# mask_image = mask_image.resize((512, 512))
|
52 |
+
# mask_image.save(".tmp/mask_1.png", "PNG")
|
53 |
+
# img = img.resize((512, 512))
|
54 |
+
# img.save(".tmp/input_1.png", "PNG")
|
55 |
+
return mask_image
|
56 |
+
|
57 |
+
def _save_transparent_mask(self, img, prediction_array, mask_items=None):
|
58 |
+
if mask_items is None:
|
59 |
+
mask_items = []
|
60 |
+
mask = np.array(img)
|
61 |
+
mask[~np.isin(prediction_array, mask_items), :] = 255
|
62 |
+
mask_image = Image.fromarray(mask).convert('RGBA')
|
63 |
+
|
64 |
+
# Set the transparency of the pixels corresponding to object 1 to 0 (fully transparent)
|
65 |
+
mask_data = mask_image.getdata()
|
66 |
+
mask_data = [(r, g, b, 0) if r == 255 else (r, g, b, 255) for (r, g, b, a) in mask_data]
|
67 |
+
mask_image.putdata(mask_data)
|
68 |
+
|
69 |
+
return mask_image
|
70 |
+
|
71 |
+
def get_mask(self, image_path=None, image=None):
|
72 |
+
if image_path:
|
73 |
+
image = Image.open(image_path)
|
74 |
+
else:
|
75 |
+
if not image:
|
76 |
+
raise ValueError("no image provided")
|
77 |
+
|
78 |
+
# display(image)
|
79 |
+
prediction = self._predict(image)
|
80 |
+
|
81 |
+
label_ids = np.unique(prediction)
|
82 |
+
|
83 |
+
# mask_items = [0, 3, 5, 8, 14]
|
84 |
+
mask_items = [8] # windowpane
|
85 |
+
|
86 |
+
if 73 in label_ids or 50 in label_ids or 61 in label_ids:
|
87 |
+
# mask_items = [0, 3, 5, 8, 14, 50, 61, 71, 73, 118, 124, 129]
|
88 |
+
room = 'kitchen'
|
89 |
+
elif 37 in label_ids or 65 in label_ids or (27 in label_ids and 47 in label_ids and 70 in label_ids):
|
90 |
+
# mask_items = [0, 3, 5, 8, 14, 27, 65]
|
91 |
+
room = 'bathroom'
|
92 |
+
elif 7 in label_ids:
|
93 |
+
room = 'bedroom'
|
94 |
+
elif 23 in label_ids or 49 in label_ids:
|
95 |
+
# mask_items = [0, 3, 5, 8, 14, 49]
|
96 |
+
room = 'living room'
|
97 |
+
elif 15 in label_ids and 19 in label_ids:
|
98 |
+
room = 'dining room'
|
99 |
+
else:
|
100 |
+
room = 'room'
|
101 |
+
label_ids_without_mask = [i for i in label_ids if i not in mask_items]
|
102 |
+
|
103 |
+
items = [self.segmentation_model.config.id2label[i] for i in label_ids_without_mask]
|
104 |
+
|
105 |
+
mask_image = self._save_mask(prediction, mask_items)
|
106 |
+
transparent_mask_image = self._save_transparent_mask(image, prediction, mask_items)
|
107 |
+
return mask_image, transparent_mask_image, image, items, room
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
Pillow
|
3 |
+
opencv-python
|
4 |
+
transformers
|