Spaces:
Sleeping
Sleeping
File size: 6,515 Bytes
18246c7 1db1092 18246c7 1db1092 18246c7 1db1092 18246c7 1db1092 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# app.py
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
from jsonschema import validate, ValidationError
import logging
# Initialize logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("StrategyInterpreterSpace")
# Load model and tokenizer
model_name = "EleutherAI/gpt-neo-2.7B" # Updated model
logger.info(f"Loading model '{model_name}'...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
logger.info("Model loaded successfully.")
# Define JSON schema
schema = {
"type": "object",
"required": [
"strategy_name",
"market_type",
"assets",
"trade_parameters",
"conditions",
"risk_management"
],
"properties": {
"strategy_name": {"type": "string"},
"market_type": {"type": "string", "enum": ["spot", "futures", "margin"]},
"assets": {"type": "array", "items": {"type": "string"}},
"trade_parameters": {
"type": "object",
"required": ["leverage", "order_type", "position_size"],
"properties": {
"leverage": {"type": "number"},
"order_type": {"type": "string"},
"position_size": {"type": "number"}
}
},
"conditions": {
"type": "object",
"required": ["entry", "exit"],
"properties": {
"entry": {
"type": "array",
"items": {"$ref": "#/definitions/condition"}
},
"exit": {
"type": "array",
"items": {"$ref": "#/definitions/condition"}
}
}
},
"risk_management": {
"type": "object",
"required": ["stop_loss", "take_profit", "trailing_stop_loss"],
"properties": {
"stop_loss": {"type": "number"},
"take_profit": {"type": "number"},
"trailing_stop_loss": {"type": "number"}
}
}
},
"definitions": {
"condition": {
"type": "object",
"required": ["indicator", "operator", "value", "timeframe"],
"properties": {
"indicator": {"type": "string"},
"operator": {"type": "string", "enum": [">", "<", "==", ">=", "<="]},
"value": {"type": ["string", "number"]},
"timeframe": {"type": "string"},
"indicator_parameters": {
"type": "object",
"properties": {
"period": {"type": "number"},
},
"additionalProperties": True
}
}
}
}
}
def interpret_strategy(description: str) -> str:
prompt = f"""
You are an expert crypto trading assistant. Convert the following trading strategy description into a JSON format following this schema:
{json.dumps(schema, indent=2)}
Include all indicators (only ones available in Ta-lib and pandas-ta), their parameters (only ones that are standard for ccxt and backtrader to support), assets (only ones that are available through BitGet) as trading pairs, conditions (only those supported by bitget, backtrader, finta, pandas-ta), risk management settings, and trade execution details (only those supported by ccxt, bitget and backtrader).
Response should only return the JSON with the correct parameters, nothing else.
Strategy Description:
{description}
JSON:
"""
inputs = tokenizer.encode(prompt, return_tensors="pt")
outputs = model.generate(
inputs,
max_length=1000,
temperature=0.7,
top_p=0.9,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
response_text = generated_text[len(prompt):].strip()
# Validate JSON
try:
strategy_data = json.loads(response_text)
validate(instance=strategy_data, schema=schema)
return json.dumps(strategy_data, indent=2)
except (json.JSONDecodeError, ValidationError) as e:
logger.error(f"Error interpreting strategy: {e}")
return f"Error interpreting strategy: {e}"
def suggest_strategy(risk_level: str, market_type: str) -> str:
prompt = f"""Please create a unique crypto trading strategy suitable for a '{risk_level}' risk appetite in the '{market_type}' market.
Ensure the JSON matches this schema:
{json.dumps(schema, indent=2)}
Use indicators and conditions that can be applied by ccxt, bitget, pandas-ta, and backtrader.
JSON:"""
inputs = tokenizer.encode(prompt, return_tensors="pt")
outputs = model.generate(
inputs,
max_length=1000,
temperature=0.7,
top_p=0.9,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
response_text = generated_text[len(prompt):].strip()
# Validate JSON
try:
strategy_data = json.loads(response_text)
validate(instance=strategy_data, schema=schema)
if strategy_data.get("market_type") != market_type:
raise ValueError("The generated strategy's market type does not match the selected market type.")
return json.dumps(strategy_data, indent=2)
except (json.JSONDecodeError, ValidationError, ValueError) as e:
logger.error(f"Error generating strategy: {e}")
return f"Error generating strategy: {e}"
iface_interpret = gr.Interface(
fn=interpret_strategy,
inputs=gr.inputs.Textbox(lines=10, placeholder="Enter your strategy description here..."),
outputs="text",
title="Strategy Interpreter",
description="Convert trading strategy descriptions into structured JSON format."
)
iface_suggest = gr.Interface(
fn=suggest_strategy,
inputs=[
gr.inputs.Textbox(lines=1, placeholder="Enter risk level (e.g., medium)...", label="Risk Level"),
gr.inputs.Textbox(lines=1, placeholder="Enter market type (e.g., spot)...", label="Market Type")
],
outputs="text",
title="Strategy Suggester",
description="Generate a unique trading strategy based on risk level and market type."
)
app = gr.TabbedInterface([iface_interpret, iface_suggest], ["Interpret Strategy", "Suggest Strategy"])
if __name__ == "__main__":
app.launch()
|