Spaces:
Sleeping
Sleeping
File size: 9,334 Bytes
18246c7 1db1092 21c4566 1db1092 21c4566 1db1092 21c4566 1db1092 21c4566 1db1092 21c4566 1db1092 21c4566 1db1092 21c4566 1db1092 21c4566 1db1092 21c4566 1db1092 21c4566 1db1092 21c4566 1db1092 18246c7 1db1092 21c4566 1db1092 93ce958 92b21fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# app.py
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
from jsonschema import validate, ValidationError
import logging
import torch
# Initialize logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("StrategyInterpreterSpace")
# Load model and tokenizer
model_name = "EleutherAI/gpt-neo-2.7B" # Using a smaller model to fit within memory constraints
logger.info(f"Loading model '{model_name}'...")
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
logger.info("Model loaded successfully.")
except Exception as e:
logger.error(f"Failed to load model: {e}")
raise e
# Define JSON schema
schema = {
"type": "object",
"required": [
"strategy_name",
"market_type",
"assets",
"trade_parameters",
"conditions",
"risk_management"
],
"properties": {
"strategy_name": {"type": "string"},
"market_type": {"type": "string", "enum": ["spot", "futures", "margin"]},
"assets": {"type": "array", "items": {"type": "string"}},
"trade_parameters": {
"type": "object",
"required": ["leverage", "order_type", "position_size"],
"properties": {
"leverage": {"type": "number"},
"order_type": {"type": "string"},
"position_size": {"type": "number"}
}
},
"conditions": {
"type": "object",
"required": ["entry", "exit"],
"properties": {
"entry": {
"type": "array",
"items": {"$ref": "#/definitions/condition"}
},
"exit": {
"type": "array",
"items": {"$ref": "#/definitions/condition"}
}
}
},
"risk_management": {
"type": "object",
"required": ["stop_loss", "take_profit", "trailing_stop_loss"],
"properties": {
"stop_loss": {"type": "number"},
"take_profit": {"type": "number"},
"trailing_stop_loss": {"type": "number"}
}
}
},
"definitions": {
"condition": {
"type": "object",
"required": ["indicator", "operator", "value", "timeframe"],
"properties": {
"indicator": {"type": "string"},
"operator": {"type": "string", "enum": [">", "<", "==", ">=", "<="]},
"value": {"type": ["string", "number"]},
"timeframe": {"type": "string"},
"indicator_parameters": {
"type": "object",
"properties": {
"period": {"type": "number"},
},
"additionalProperties": True
}
}
}
}
}
def interpret_strategy(description: str) -> dict:
logger.info("Received strategy description for interpretation.")
prompt = f"""
You are an expert crypto trading assistant. Convert the following trading strategy description into a JSON format strictly following this schema:
{json.dumps(schema, indent=2)}
Ensure that the response contains only valid JSON with the correct parameters. Do not include any additional text or explanations.
Strategy Description:
{description}
JSON:
"""
logger.debug(f"Prompt constructed: {prompt}")
try:
inputs = tokenizer.encode(prompt, return_tensors="pt")
logger.info("Tokenized the input prompt.")
except Exception as e:
logger.error(f"Error during tokenization: {e}")
return {"error": f"Error during tokenization: {e}"}
try:
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=800, # Reduced max_length to prevent overly long outputs
temperature=0.7,
top_p=0.9,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
)
logger.info("Model generated output.")
except Exception as e:
logger.error(f"Error during model generation: {e}")
return {"error": f"Error during model generation: {e}"}
try:
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.debug(f"Generated text: {generated_text}")
response_text = generated_text[len(prompt):].strip()
logger.debug(f"Response text after prompt removal: {response_text}")
except Exception as e:
logger.error(f"Error during decoding: {e}")
return {"error": f"Error during decoding: {e}"}
# Validate JSON
try:
strategy_data = json.loads(response_text)
validate(instance=strategy_data, schema=schema)
logger.info("Strategy interpreted successfully and validated against schema.")
return strategy_data # Return as dict for Gradio's JSON output
except json.JSONDecodeError as e:
logger.error(f"JSON decoding error: {e}")
# Return raw text for debugging
return {"error": f"Error interpreting strategy: Invalid JSON format.\nGenerated Text:\n{response_text}\nDetails: {e}"}
except ValidationError as e:
logger.error(f"JSON validation error: {e}")
return {"error": f"Error interpreting strategy: JSON does not conform to schema.\nDetails: {e}"}
def suggest_strategy(risk_level: str, market_type: str) -> dict:
logger.info("Received request to suggest a new strategy.")
prompt = f"""Please create a unique crypto trading strategy suitable for a '{risk_level}' risk appetite in the '{market_type}' market.
Ensure the JSON matches this schema:
{json.dumps(schema, indent=2)}
Use indicators and conditions that can be applied by ccxt, bitget, pandas-ta, and backtrader.
JSON:"""
logger.debug(f"Prompt constructed for strategy suggestion: {prompt}")
try:
inputs = tokenizer.encode(prompt, return_tensors="pt")
logger.info("Tokenized the suggestion prompt.")
except Exception as e:
logger.error(f"Error during tokenization: {e}")
return {"error": f"Error during tokenization: {e}"}
try:
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=800, # Reduced max_length to prevent overly long outputs
temperature=0.7,
top_p=0.9,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
)
logger.info("Model generated suggestion output.")
except Exception as e:
logger.error(f"Error during model generation: {e}")
return {"error": f"Error during model generation: {e}"}
try:
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.debug(f"Generated suggestion text: {generated_text}")
response_text = generated_text[len(prompt):].strip()
logger.debug(f"Suggestion response text after prompt removal: {response_text}")
except Exception as e:
logger.error(f"Error during decoding: {e}")
return {"error": f"Error during decoding: {e}"}
# Validate JSON
try:
strategy_data = json.loads(response_text)
validate(instance=strategy_data, schema=schema)
if strategy_data.get("market_type") != market_type:
raise ValueError("The generated strategy's market type does not match the selected market type.")
logger.info("Strategy suggested successfully and validated against schema.")
return strategy_data # Return as dict for Gradio's JSON output
except json.JSONDecodeError as e:
logger.error(f"JSON decoding error: {e}")
# Return raw text for debugging
return {"error": f"Error generating strategy: Invalid JSON format.\nGenerated Text:\n{response_text}\nDetails: {e}"}
except ValidationError as e:
logger.error(f"JSON validation error: {e}")
return {"error": f"Error generating strategy: JSON does not conform to schema.\nDetails: {e}"}
except ValueError as e:
logger.error(f"Market type mismatch error: {e}")
return {"error": f"Error generating strategy: {e}"}
iface_interpret = gr.Interface(
fn=interpret_strategy,
inputs=gr.Textbox(lines=10, placeholder="Enter your strategy description here...", label="Strategy Description"),
outputs=gr.JSON(label="Interpreted Strategy"),
title="Strategy Interpreter",
description="Convert trading strategy descriptions into structured JSON format."
)
iface_suggest = gr.Interface(
fn=suggest_strategy,
inputs=[
gr.Textbox(lines=1, placeholder="Enter risk level (e.g., medium)...", label="Risk Level"),
gr.Textbox(lines=1, placeholder="Enter market type (e.g., spot)...", label="Market Type")
], # Ensure this list is properly closed with ]
outputs=gr.JSON(label="Suggested Strategy"),
title="Strategy Suggester",
description="Generate a unique trading strategy based on risk level and market type."
)
app = gr.TabbedInterface([iface_interpret, iface_suggest], ["Interpret Strategy", "Suggest Strategy"])
if __name__ == "__main__":
app.launch()
|