Spaces:
Runtime error
Runtime error
use gradio
Browse files
app.py
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
import transformers
|
2 |
import torch
|
3 |
import tokenizers
|
4 |
-
import
|
5 |
import re
|
6 |
|
7 |
from PIL import Image
|
8 |
|
9 |
|
10 |
-
@st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None, re.Pattern: lambda _: None}, allow_output_mutation=True, suppress_st_warning=True)
|
11 |
def get_model(model_name, model_path='pytorch_model.bin'):
|
12 |
tokenizer = transformers.GPT2Tokenizer.from_pretrained(model_name)
|
13 |
model = transformers.OPTForCausalLM.from_pretrained(model_name)
|
@@ -34,28 +33,18 @@ def predict(text, model, tokenizer, n_beams=5, temperature=2.5, top_p=0.8, lengt
|
|
34 |
return list(map(tokenizer.decode, out))[0]
|
35 |
|
36 |
|
37 |
-
model, tokenizer = get_model('
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
# st.image(image, caption='НейроКорж')
|
43 |
|
44 |
-
# option = st.selectbox('Выберите своего Коржа', ('Быстрый', 'Глубокий'))
|
45 |
-
craziness = st.slider(label='Craziness', min_value=0, max_value=100, value=50, step=5)
|
46 |
-
temperature = 2 + craziness / 50.
|
47 |
-
|
48 |
-
st.markdown("\n")
|
49 |
-
|
50 |
-
text = st.text_area(label='What are you interested in?', value='Covid - a worldwide conspiracy?', height=80)
|
51 |
-
button = st.button('Go')
|
52 |
-
|
53 |
-
if button:
|
54 |
-
try:
|
55 |
-
with st.spinner('Finding out the truth'):
|
56 |
-
result = predict(text, model, tokenizer, temperature=temperature)
|
57 |
-
|
58 |
-
st.text_area(label='', value=result, height=1100)
|
59 |
-
|
60 |
-
except Exception:
|
61 |
-
st.error("Ooooops, something went wrong. Please try again and report to me, tg: @vladyur")
|
|
|
1 |
import transformers
|
2 |
import torch
|
3 |
import tokenizers
|
4 |
+
import gradio as gr
|
5 |
import re
|
6 |
|
7 |
from PIL import Image
|
8 |
|
9 |
|
|
|
10 |
def get_model(model_name, model_path='pytorch_model.bin'):
|
11 |
tokenizer = transformers.GPT2Tokenizer.from_pretrained(model_name)
|
12 |
model = transformers.OPTForCausalLM.from_pretrained(model_name)
|
|
|
33 |
return list(map(tokenizer.decode, out))[0]
|
34 |
|
35 |
|
36 |
+
model, tokenizer = get_model('big-kek/NeuroSkeptic', 'big-kek/NeuroSkeptic')
|
37 |
|
38 |
+
example = 'Who is Bill Gates really?'
|
39 |
+
demo = gr.Interface(
|
40 |
+
fn=predict,
|
41 |
+
inputs=[
|
42 |
+
gr.components.Textbox(label="what is your interest?",value = example),
|
43 |
+
],
|
44 |
+
outputs=[
|
45 |
+
gr.components.Textbox(label="oh! my ...",interactive = False),
|
46 |
+
],
|
47 |
+
)
|
48 |
|
49 |
+
demo.launch()
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|