import transformers import torch import tokenizers import streamlit as st import re from PIL import Image @st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None, re.Pattern: lambda _: None}, allow_output_mutation=True, suppress_st_warning=True) def get_model(model_name, model_path): tokenizer = transformers.GPT2Tokenizer.from_pretrained(model_name) model = transformers.OPTForCausalLM.from_pretrained('big-kek/NeuroSkeptic', device_map='cpu') model.eval() return model, tokenizer def predict(text, model, tokenizer, n_beams=5, temperature=2.5, top_p=0.8, length_of_generated=300): text += '\n' input_ids = tokenizer.encode(text, return_tensors="pt") length_of_prompt = len(input_ids[0]) with torch.no_grad(): out = model.generate(input_ids, do_sample=True, num_beams=n_beams, temperature=temperature, top_p=top_p, max_length=length_of_prompt + length_of_generated, eos_token_id=tokenizer.eos_token_id ) return list(map(tokenizer.decode, out))[0] model, tokenizer = get_model('facebook/opt-13b') # st.title("NeuroKorzh") # image = Image.open('korzh.jpg') # st.image(image, caption='НейроКорж') # option = st.selectbox('Выберите своего Коржа', ('Быстрый', 'Глубокий')) craziness = st.slider(label='Craziness', min_value=0, max_value=100, value=50, step=5) temperature = 2 + craziness / 50. st.markdown("\n") text = st.text_area(label='What are you interested in?', value='Covid - a worldwide conspiracy?', height=80) button = st.button('Go') if button: try: with st.spinner('Finding out the truth'): result = predict(text, model, tokenizer, temperature=temperature) st.text_area(label='', value=result, height=1100) except Exception: st.error("Ooooops, something went wrong. Please try again and report to me, tg: @vladyur")