Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
import gradio as gr
|
3 |
+
import supervision as sv
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
from ultralytics import YOLO
|
8 |
+
|
9 |
+
# Load the YOLO model from Hugging Face
|
10 |
+
model_path = hf_hub_download(
|
11 |
+
repo_id="cultural-heritage/medieval-manuscript-yolov11",
|
12 |
+
filename="medieval-yolov11n.pt"
|
13 |
+
)
|
14 |
+
# Load the YOLO model from local path
|
15 |
+
model = YOLO(model_path)
|
16 |
+
|
17 |
+
# Create annotators
|
18 |
+
LABEL_ANNOTATOR = sv.LabelAnnotator(text_color=sv.Color.BLACK)
|
19 |
+
BOX_ANNOTATOR = sv.BoxAnnotator()
|
20 |
+
|
21 |
+
def detect_and_annotate(
|
22 |
+
image: np.ndarray,
|
23 |
+
conf_threshold: float,
|
24 |
+
iou_threshold: float
|
25 |
+
) -> np.ndarray:
|
26 |
+
# Perform inference
|
27 |
+
results = model.predict(
|
28 |
+
image,
|
29 |
+
conf=conf_threshold,
|
30 |
+
iou=iou_threshold
|
31 |
+
)[0]
|
32 |
+
|
33 |
+
# Convert results to supervision Detections
|
34 |
+
boxes = results.boxes.xyxy.cpu().numpy()
|
35 |
+
confidence = results.boxes.conf.cpu().numpy()
|
36 |
+
class_ids = results.boxes.cls.cpu().numpy().astype(int)
|
37 |
+
|
38 |
+
# Create Detections object
|
39 |
+
detections = sv.Detections(
|
40 |
+
xyxy=boxes,
|
41 |
+
confidence=confidence,
|
42 |
+
class_id=class_ids
|
43 |
+
)
|
44 |
+
|
45 |
+
# Create labels with confidence scores
|
46 |
+
labels = [
|
47 |
+
f"{results.names[class_id]} ({conf:.2f})"
|
48 |
+
for class_id, conf
|
49 |
+
in zip(class_ids, confidence)
|
50 |
+
]
|
51 |
+
|
52 |
+
# Annotate image
|
53 |
+
annotated_image = image.copy()
|
54 |
+
annotated_image = BOX_ANNOTATOR.annotate(scene=annotated_image, detections=detections)
|
55 |
+
annotated_image = LABEL_ANNOTATOR.annotate(scene=annotated_image, detections=detections, labels=labels)
|
56 |
+
|
57 |
+
return annotated_image
|
58 |
+
|
59 |
+
# Create Gradio interface
|
60 |
+
with gr.Blocks() as demo:
|
61 |
+
gr.Markdown("# Medieval Manuscript Detection with YOLO")
|
62 |
+
|
63 |
+
with gr.Row():
|
64 |
+
with gr.Column():
|
65 |
+
input_image = gr.Image(
|
66 |
+
label="Input Image",
|
67 |
+
type='numpy'
|
68 |
+
)
|
69 |
+
with gr.Accordion("Detection Settings", open=True):
|
70 |
+
with gr.Row():
|
71 |
+
conf_threshold = gr.Slider(
|
72 |
+
label="Confidence Threshold",
|
73 |
+
minimum=0.0,
|
74 |
+
maximum=1.0,
|
75 |
+
step=0.05,
|
76 |
+
value=0.25,
|
77 |
+
)
|
78 |
+
iou_threshold = gr.Slider(
|
79 |
+
label="IoU Threshold",
|
80 |
+
minimum=0.0,
|
81 |
+
maximum=1.0,
|
82 |
+
step=0.05,
|
83 |
+
value=0.45,
|
84 |
+
info="Decrease for stricter detection, increase for more overlapping boxes"
|
85 |
+
)
|
86 |
+
with gr.Row():
|
87 |
+
clear_btn = gr.Button("Clear")
|
88 |
+
detect_btn = gr.Button("Detect", variant="primary")
|
89 |
+
|
90 |
+
with gr.Column():
|
91 |
+
output_image = gr.Image(
|
92 |
+
label="Detection Result",
|
93 |
+
type='numpy'
|
94 |
+
)
|
95 |
+
|
96 |
+
def process_image(
|
97 |
+
image: np.ndarray,
|
98 |
+
conf_threshold: float,
|
99 |
+
iou_threshold: float
|
100 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
101 |
+
if image is None:
|
102 |
+
return None, None
|
103 |
+
annotated_image = detect_and_annotate(image, conf_threshold, iou_threshold)
|
104 |
+
return image, annotated_image
|
105 |
+
|
106 |
+
def clear():
|
107 |
+
return None, None
|
108 |
+
|
109 |
+
# Connect buttons to functions
|
110 |
+
detect_btn.click(
|
111 |
+
process_image,
|
112 |
+
inputs=[input_image, conf_threshold, iou_threshold],
|
113 |
+
outputs=[input_image, output_image]
|
114 |
+
)
|
115 |
+
clear_btn.click(
|
116 |
+
clear,
|
117 |
+
inputs=None,
|
118 |
+
outputs=[input_image, output_image]
|
119 |
+
)
|
120 |
+
|
121 |
+
if __name__ == "__main__":
|
122 |
+
demo.launch(debug=True, show_error=True)
|