File size: 1,067 Bytes
9b95338
2623e85
 
 
8ceef3d
2623e85
8ceef3d
 
2623e85
 
 
 
 
 
 
 
 
 
 
 
95d2476
 
d9adf81
 
 
 
 
 
 
 
 
cfc29b0
 
 
 
d9adf81
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import gradio as gr
from faiss import IndexFlatIP
import pandas as pd
import numpy as np
from transformers import AutoTokenizer


tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased")
input_embeddings = np.load("bert_input_embeddings.npy")
index = IndexFlatIP(input_embeddings.shape[-1])  
index.add(input_embeddings)
vocab = {v:k for k,v in tokenizer.vocab.items()}
lookup_table = pd.Series(vocab).sort_index()

def get_first_subword(word):
    try:
        return tokenizer.vocab[word]
    except:
        return tokenizer(word, add_special_tokens=False)['input_ids'][0]

def search(token_to_lookup, num_neighbors=100):
    i = get_first_subword(token_to_lookup)
    _ , I = index.search(input_embeddings[i:i+1], num_neighbors)
    hits = lookup_table.take(I[0])
    return hits.values


iface = gr.Interface(
    fn=search,
    inputs=gr.Textbox(lines=1, placeholder="Enter token..."),
    outputs=gr.Textbox(label="Results"),
    examples=[
        ["##logy"],
        ["responded"],
    ],
)
iface.launch(enable_queue=True, debug=True, show_error=True)