Spaces:
Build error
Build error
import gradio as gr | |
from faiss import IndexFlatIP, IndexFlatL2 | |
import pandas as pd | |
import numpy as np | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased") | |
normalized = np.load("embeddings/bert-large-uncased/normalized.npy") | |
unnormalized = np.load("embeddings/bert-large-uncased/unnormalized.npy") | |
index_L2 = IndexFlatL2(unnormalized.shape[-1]) | |
index_L2.add(unnormalized) | |
index_IP = IndexFlatIP(normalized.shape[-1]) | |
index_IP.add(normalized) | |
vocab = {v:k for k,v in tokenizer.vocab.items()} | |
lookup_table = pd.Series(vocab).sort_index() | |
def get_first_subword(word): | |
try: | |
return tokenizer.vocab[word] | |
except: | |
return tokenizer(word, add_special_tokens=False)['input_ids'][0] | |
def search(token_to_lookup, num_neighbors=250): | |
i = get_first_subword(token_to_lookup) | |
_ , I_IP = index_IP.search(normalized[i:i+1], num_neighbors) | |
hits_IP = lookup_table.take(I_IP[0]) | |
results_IP = hits_IP.values[1:] | |
results_IP = [r for r in results_IP if not "[unused" in r] | |
_ , I_L2 = index_L2.search(unnormalized[i:i+1], num_neighbors) | |
hits_L2 = lookup_table.take(I_L2[0]) | |
results_L2 = hits_L2.values[1:] | |
results_L2 = [r for r in results_L2 if not "[unused" in r] | |
return [r for r in results_IP if not "##" in r], [r for r in results_IP if "##" in r], [r for r in results_L2 if not "##" in r], [r for r in results_L2 if "##" in r] | |
iface = gr.Interface( | |
fn=search, | |
#inputs=[gr.Textbox(lines=1, label="Vocabulary Token", placeholder="Enter token..."), gr.Slider(minimum=0, maximum=1000, value=250, step=10,label="number of neighbors")], | |
inputs=gr.Textbox(lines=1, label="Vocabulary Token", placeholder="Enter token..."), | |
outputs=[gr.Textbox(label="IP-Nearest tokens"), gr.Textbox(label="IP-Nearest subwords"), gr.Textbox(label="L2-Nearest tokens"), gr.Textbox(label="L2-Nearest subwords")], | |
examples=[ | |
["##logy"], | |
["##ness"], | |
["##ity"], | |
["responded"], | |
["sadness"], | |
["queen"], | |
["king"], | |
["hospital"], | |
["disease"], | |
["grammar"], | |
["philosophy"], | |
["aristotle"], | |
["##ting"], | |
["woman"], | |
["man"] | |
], | |
) | |
iface.launch(enable_queue=True, debug=True, show_error=True) |