token-explorer / app.py
Christopher Akiki
Minor fixes
b830b93
import gradio as gr
from faiss import IndexFlatIP, IndexFlatL2
import pandas as pd
import numpy as np
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased")
normalized = np.load("embeddings/bert-large-uncased/normalized.npy")
unnormalized = np.load("embeddings/bert-large-uncased/unnormalized.npy")
index_L2 = IndexFlatL2(unnormalized.shape[-1])
index_L2.add(unnormalized)
index_IP = IndexFlatIP(normalized.shape[-1])
index_IP.add(normalized)
vocab = {v:k for k,v in tokenizer.vocab.items()}
lookup_table = pd.Series(vocab).sort_index()
def get_first_subword(word):
try:
return tokenizer.vocab[word]
except:
return tokenizer(word, add_special_tokens=False)['input_ids'][0]
def search(token_to_lookup, num_neighbors=250):
i = get_first_subword(token_to_lookup)
_ , I_IP = index_IP.search(normalized[i:i+1], num_neighbors)
hits_IP = lookup_table.take(I_IP[0])
results_IP = hits_IP.values[1:]
results_IP = [r for r in results_IP if not "[unused" in r]
_ , I_L2 = index_L2.search(unnormalized[i:i+1], num_neighbors)
hits_L2 = lookup_table.take(I_L2[0])
results_L2 = hits_L2.values[1:]
results_L2 = [r for r in results_L2 if not "[unused" in r]
return [r for r in results_IP if not "##" in r], [r for r in results_IP if "##" in r], [r for r in results_L2 if not "##" in r], [r for r in results_L2 if "##" in r]
iface = gr.Interface(
fn=search,
#inputs=[gr.Textbox(lines=1, label="Vocabulary Token", placeholder="Enter token..."), gr.Slider(minimum=0, maximum=1000, value=250, step=10,label="number of neighbors")],
inputs=gr.Textbox(lines=1, label="Vocabulary Token", placeholder="Enter token..."),
outputs=[gr.Textbox(label="IP-Nearest tokens"), gr.Textbox(label="IP-Nearest subwords"), gr.Textbox(label="L2-Nearest tokens"), gr.Textbox(label="L2-Nearest subwords")],
examples=[
["##logy"],
["##ness"],
["##ity"],
["responded"],
["sadness"],
["queen"],
["king"],
["hospital"],
["disease"],
["grammar"],
["philosophy"],
["aristotle"],
["##ting"],
["woman"],
["man"]
],
)
iface.launch(enable_queue=True, debug=True, show_error=True)