import gradio as gr from faiss import IndexFlatIP, IndexFlatL2 import pandas as pd import numpy as np from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased") normalized_input_embeddings = np.load("normalized_bert_input_embeddings.npy") unnormalized_input_embeddings = np.load("unnormalized_bert_input_embeddings.npy") index_L2 = IndexFlatL2(unnormalized_input_embeddings.shape[-1]) index_L2.add(unnormalized_input_embeddings) index_IP_normalized = IndexFlatIP(normalized_input_embeddings.shape[-1]) index_IP_normalized.add(normalized_input_embeddings) vocab = {v:k for k,v in tokenizer.vocab.items()} lookup_table = pd.Series(vocab).sort_index() def get_first_subword(word): try: return tokenizer.vocab[word] except: return tokenizer(word, add_special_tokens=False)['input_ids'][0] def search(token_to_lookup, num_neighbors): i = get_first_subword(token_to_lookup) _ , I = index_IP_normalized.search(normalized_input_embeddings[i:i+1], num_neighbors) hits = lookup_table.take(I[0]) results = hits.values[1:] results = [r for r in results if not "[unused" in r] return [r for r in results if not "##" in r], [r for r in results if "##" in r] iface = gr.Interface( fn=search, #inputs=[gr.Textbox(lines=1, label="Vocabulary Token", placeholder="Enter token..."), gr.Number(value=50, label="number of neighbors")], inputs=gr.Textbox(lines=1, label="Vocabulary Token", placeholder="Enter token..."), outputs=[gr.Textbox(label="Nearest tokens"), gr.Textbox(label="Nearest subwords")], examples=[ ["##logy"], ["##ness"], ["##nity"], ["responded"], ["queen"], ["king"], ["hospital"], ["disease"], ["grammar"], ["philosophy"], ["aristotle"], ["##ting"], ["woman"], ["man"] ], ) iface.launch(enable_queue=True, debug=True, show_error=True)