Spaces:
Paused
Paused
v1
Browse files
app.py
CHANGED
@@ -1,7 +1,30 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
iface.launch()
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import transformers
|
4 |
import gradio as gr
|
5 |
|
6 |
+
from src.client import DistributedBloomForCausalLM
|
|
|
7 |
|
8 |
+
INITIAL_PEERS = ['/ip4/193.106.95.184/tcp/31337/p2p/QmUigSxrVz9x5FR9ZYr4iRfEX2vDxihL2YZtDd7sp2eKnM']
|
9 |
+
tokenizer = transformers.BloomTokenizerFast.from_pretrained("bigscience/test-bloomd-6b3")
|
10 |
+
model = DistributedBloomForCausalLM.from_pretrained("bigscience/test-bloomd-6b3", initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32)
|
11 |
+
|
12 |
+
def inference(text, seq_length=1):
|
13 |
+
input_ids = tokenizer(text, return_tensors='pt')['input_ids']
|
14 |
+
with torch.inference_mode(), model.transformer.h.inference_session() as remote_transformer:
|
15 |
+
for i in range(seq_length):
|
16 |
+
h = model.transformer.word_embeddings(input_ids)
|
17 |
+
h = model.transformer.word_embeddings_layernorm(h)
|
18 |
+
|
19 |
+
h = remote_transformer.step(h) # note [yozh]: this line currently freezes for 10 seconds first time only, its gonna be fixed in the nearest PR
|
20 |
+
|
21 |
+
h = model.transformer.ln_f(h)
|
22 |
+
h = F.linear(h, weight=model.transformer.word_embeddings.weight) # note: this line takes a while, will also be fixed
|
23 |
+
next_token_ix = torch.multinomial((h[0, -1] / 0.8).softmax(-1), 1)
|
24 |
+
|
25 |
+
# print(end=tokenizer.decode(next_token_ix.item()))
|
26 |
+
input_ids = next_token_ix.view(1, 1)
|
27 |
+
return tokenizer.decode(input_ids.item())
|
28 |
+
|
29 |
+
iface = gr.Interface(fn=inference, inputs="text", outputs="text")
|
30 |
iface.launch()
|