Spaces:
Paused
Paused
Younes Belkada
commited on
Commit
·
da8e0b6
1
Parent(s):
7e52371
Update app.py
Browse files
app.py
CHANGED
@@ -5,11 +5,13 @@ import gradio as gr
|
|
5 |
|
6 |
from src.client import DistributedBloomForCausalLM
|
7 |
|
8 |
-
INITIAL_PEERS = [
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
tokenizer = transformers.BloomTokenizerFast.from_pretrained("bigscience/test-bloomd-6b3")
|
14 |
model = DistributedBloomForCausalLM.from_pretrained("bigscience/test-bloomd-6b3", initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32)
|
15 |
|
@@ -19,16 +21,8 @@ def inference(text, seq_length=1):
|
|
19 |
for i in range(seq_length):
|
20 |
h = model.transformer.word_embeddings(input_ids)
|
21 |
h = model.transformer.word_embeddings_layernorm(h)
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
h = model.transformer.ln_f(h)
|
26 |
-
h = F.linear(h, weight=model.transformer.word_embeddings.weight) # note: this line takes a while, will also be fixed
|
27 |
-
next_token_ix = torch.multinomial((h[0, -1] / 0.8).softmax(-1), 1)
|
28 |
-
|
29 |
-
# print(end=tokenizer.decode(next_token_ix.item()))
|
30 |
-
input_ids = next_token_ix.view(1, 1)
|
31 |
-
return tokenizer.decode(input_ids.item())
|
32 |
-
|
33 |
iface = gr.Interface(fn=inference, inputs="text", outputs="text")
|
34 |
iface.launch()
|
|
|
5 |
|
6 |
from src.client import DistributedBloomForCausalLM
|
7 |
|
8 |
+
INITIAL_PEERS = ['/ip4/193.106.95.184/tcp/443/p2p/QmSXDXLeSMXjS4YerDrdn1zpGQaNzkZ9ogN2SoAEyAdDhs']
|
9 |
+
|
10 |
+
import hivemind # test that DHT instances work on localhost
|
11 |
+
dht1 = hivemind.DHT(start=True)
|
12 |
+
dht2 = hivemind.DHT(start=True, initial_peers=dht1.get_visible_maddrs())
|
13 |
+
|
14 |
+
|
15 |
tokenizer = transformers.BloomTokenizerFast.from_pretrained("bigscience/test-bloomd-6b3")
|
16 |
model = DistributedBloomForCausalLM.from_pretrained("bigscience/test-bloomd-6b3", initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32)
|
17 |
|
|
|
21 |
for i in range(seq_length):
|
22 |
h = model.transformer.word_embeddings(input_ids)
|
23 |
h = model.transformer.word_embeddings_layernorm(h)
|
24 |
+
h = remote_transformer.step(h)
|
25 |
+
return repr(h)
|
26 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
iface = gr.Interface(fn=inference, inputs="text", outputs="text")
|
28 |
iface.launch()
|