import gradio as gr from transformers import pipeline import torch # Load the model and tokenizer model_name = 'bilalfaye/nllb-200-distilled-600M-wo-fr-en' device = "cuda" if torch.cuda.is_available() else "cpu" # Define the translation pipeline translator = pipeline( "translation", model=model_name, device=device ) # Define the translation function def translate_chat(message, history, source_language, target_language): # Mapping of languages to model codes lang_map = { "Wolof": "wol_Latn", "English": "eng_Latn", "French": "fra_Latn" } if source_language not in lang_map or target_language not in lang_map: return "Invalid language selection." src_lang = lang_map[source_language] tgt_lang = lang_map[target_language] if src_lang == tgt_lang: return "Source and target languages must be different." # Perform the translation translation = translator(message, src_lang=src_lang, tgt_lang=tgt_lang) return translation[0]["translation_text"] # Gradio chat interface interface = gr.ChatInterface( fn=translate_chat, additional_inputs=[ gr.Dropdown( choices=["Wolof", "French", "English"], label="Source Language", value="Wolof", # Default value ), gr.Dropdown( choices=["Wolof", "French", "English"], label="Target Language", value="English", # Default value ), ], title="Wolof ↔ French ↔ English Translator", description="Select the source and target languages (in the bottom) to translate between Wolof, French, and English.", ) # Launch the app interface.launch(debug=True, share=True)