File size: 20,660 Bytes
564df58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
from os import path
from PIL import Image
from typing import Any

from constants import DEVICE
from paths import FastStableDiffusionPaths
from backend.upscale.upscaler import upscale_image
from backend.controlnet import controlnet_settings_from_dict
from backend.upscale.tiled_upscale import generate_upscaled_image
from frontend.webui.image_variations_ui import generate_image_variations
from backend.lora import (
    get_active_lora_weights,
    update_lora_weights,
    load_lora_weight,
)
from backend.models.lcmdiffusion_setting import (
    DiffusionTask,
    LCMDiffusionSetting,
    ControlNetSetting,
)


_batch_count = 1
_edit_lora_settings = False


def user_value(
    value_type: type,
    message: str,
    default_value: Any,
) -> Any:
    try:
        value = value_type(input(message))
    except:
        value = default_value
    return value


def interactive_mode(
    config,
    context,
):
    print("=============================================")
    print("Welcome to FastSD CPU Interactive CLI")
    print("=============================================")
    while True:
        print("> 1. Text to Image")
        print("> 2. Image to Image")
        print("> 3. Image Variations")
        print("> 4. EDSR Upscale")
        print("> 5. SD Upscale")
        print("> 6. Edit default generation settings")
        print("> 7. Edit LoRA settings")
        print("> 8. Edit ControlNet settings")
        print("> 9. Edit negative prompt")
        print("> 10. Quit")
        option = user_value(
            int,
            "Enter a Diffusion Task number (1): ",
            1,
        )
        if option not in range(1, 11):
            print("Wrong Diffusion Task number!")
            exit()

        if option == 1:
            interactive_txt2img(
                config,
                context,
            )
        elif option == 2:
            interactive_img2img(
                config,
                context,
            )
        elif option == 3:
            interactive_variations(
                config,
                context,
            )
        elif option == 4:
            interactive_edsr(
                config,
                context,
            )
        elif option == 5:
            interactive_sdupscale(
                config,
                context,
            )
        elif option == 6:
            interactive_settings(
                config,
                context,
            )
        elif option == 7:
            interactive_lora(
                config,
                context,
                True,
            )
        elif option == 8:
            interactive_controlnet(
                config,
                context,
                True,
            )
        elif option == 9:
            interactive_negative(
                config,
                context,
            )
        elif option == 10:
            exit()


def interactive_negative(
    config,
    context,
):
    settings = config.lcm_diffusion_setting
    print(f"Current negative prompt: '{settings.negative_prompt}'")
    user_input = input("Write a negative prompt (set guidance > 1.0): ")
    if user_input == "":
        return
    else:
        settings.negative_prompt = user_input


def interactive_controlnet(
    config,
    context,
    menu_flag=False,
):
    """
    @param menu_flag: Indicates whether this function was called from the main
        interactive CLI menu; _True_ if called from the main menu, _False_ otherwise
    """
    settings = config.lcm_diffusion_setting
    if not settings.controlnet:
        settings.controlnet = ControlNetSetting()

    current_enabled = settings.controlnet.enabled
    current_adapter_path = settings.controlnet.adapter_path
    current_conditioning_scale = settings.controlnet.conditioning_scale
    current_control_image = settings.controlnet._control_image

    option = input("Enable ControlNet? (y/N): ")
    settings.controlnet.enabled = True if option.upper() == "Y" else False
    if settings.controlnet.enabled:
        option = input(
            f"Enter ControlNet adapter path ({settings.controlnet.adapter_path}): "
        )
        if option != "":
            settings.controlnet.adapter_path = option
        settings.controlnet.conditioning_scale = user_value(
            float,
            f"Enter ControlNet conditioning scale ({settings.controlnet.conditioning_scale}): ",
            settings.controlnet.conditioning_scale,
        )
        option = input(
            f"Enter ControlNet control image path (Leave empty to reuse current): "
        )
        if option != "":
            try:
                new_image = Image.open(option)
                settings.controlnet._control_image = new_image
            except (AttributeError, FileNotFoundError) as e:
                settings.controlnet._control_image = None
        if (
            not settings.controlnet.adapter_path
            or not path.exists(settings.controlnet.adapter_path)
            or not settings.controlnet._control_image
        ):
            print("Invalid ControlNet settings! Disabling ControlNet")
            settings.controlnet.enabled = False

    if (
        settings.controlnet.enabled != current_enabled
        or settings.controlnet.adapter_path != current_adapter_path
    ):
        settings.rebuild_pipeline = True


def interactive_lora(
    config,
    context,
    menu_flag=False,
):
    """
    @param menu_flag: Indicates whether this function was called from the main
        interactive CLI menu; _True_ if called from the main menu, _False_ otherwise
    """
    if context == None or context.lcm_text_to_image.pipeline == None:
        print("Diffusion pipeline not initialized, please run a generation task first!")
        return

    print("> 1. Change LoRA weights")
    print("> 2. Load new LoRA model")
    option = user_value(
        int,
        "Enter a LoRA option (1): ",
        1,
    )
    if option not in range(1, 3):
        print("Wrong LoRA option!")
        return

    if option == 1:
        update_weights = []
        active_weights = get_active_lora_weights()
        for lora in active_weights:
            weight = user_value(
                float,
                f"Enter a new LoRA weight for {lora[0]} ({lora[1]}): ",
                lora[1],
            )
            update_weights.append(
                (
                    lora[0],
                    weight,
                )
            )
        if len(update_weights) > 0:
            update_lora_weights(
                context.lcm_text_to_image.pipeline,
                config.lcm_diffusion_setting,
                update_weights,
            )
    elif option == 2:
        # Load a new LoRA
        settings = config.lcm_diffusion_setting
        settings.lora.fuse = False
        settings.lora.enabled = False
        settings.lora.path = input("Enter LoRA model path: ")
        settings.lora.weight = user_value(
            float,
            "Enter a LoRA weight (0.5): ",
            0.5,
        )
        if not path.exists(settings.lora.path):
            print("Invalid LoRA model path!")
            return
        settings.lora.enabled = True
        load_lora_weight(context.lcm_text_to_image.pipeline, settings)

    if menu_flag:
        global _edit_lora_settings
        _edit_lora_settings = False
        option = input("Edit LoRA settings after every generation? (y/N): ")
        if option.upper() == "Y":
            _edit_lora_settings = True


def interactive_settings(
    config,
    context,
):
    global _batch_count
    settings = config.lcm_diffusion_setting
    print("Enter generation settings (leave empty to use current value)")
    print("> 1. Use LCM")
    print("> 2. Use LCM-Lora")
    print("> 3. Use OpenVINO")
    option = user_value(
        int,
        "Select inference model option (1): ",
        1,
    )
    if option not in range(1, 4):
        print("Wrong inference model option! Falling back to defaults")
        return

    settings.use_lcm_lora = False
    settings.use_openvino = False
    if option == 1:
        lcm_model_id = input(f"Enter LCM model ID ({settings.lcm_model_id}): ")
        if lcm_model_id != "":
            settings.lcm_model_id = lcm_model_id
    elif option == 2:
        settings.use_lcm_lora = True
        lcm_lora_id = input(
            f"Enter LCM-Lora model ID ({settings.lcm_lora.lcm_lora_id}): "
        )
        if lcm_lora_id != "":
            settings.lcm_lora.lcm_lora_id = lcm_lora_id
        base_model_id = input(
            f"Enter Base model ID ({settings.lcm_lora.base_model_id}): "
        )
        if base_model_id != "":
            settings.lcm_lora.base_model_id = base_model_id
    elif option == 3:
        settings.use_openvino = True
        openvino_lcm_model_id = input(
            f"Enter OpenVINO model ID ({settings.openvino_lcm_model_id}): "
        )
        if openvino_lcm_model_id != "":
            settings.openvino_lcm_model_id = openvino_lcm_model_id

    settings.use_offline_model = True
    settings.use_tiny_auto_encoder = True
    option = input("Work offline? (Y/n): ")
    if option.upper() == "N":
        settings.use_offline_model = False
    option = input("Use Tiny Auto Encoder? (Y/n): ")
    if option.upper() == "N":
        settings.use_tiny_auto_encoder = False

    settings.image_width = user_value(
        int,
        f"Image width ({settings.image_width}): ",
        settings.image_width,
    )
    settings.image_height = user_value(
        int,
        f"Image height ({settings.image_height}): ",
        settings.image_height,
    )
    settings.inference_steps = user_value(
        int,
        f"Inference steps ({settings.inference_steps}): ",
        settings.inference_steps,
    )
    settings.guidance_scale = user_value(
        float,
        f"Guidance scale ({settings.guidance_scale}): ",
        settings.guidance_scale,
    )
    settings.number_of_images = user_value(
        int,
        f"Number of images per batch ({settings.number_of_images}): ",
        settings.number_of_images,
    )
    _batch_count = user_value(
        int,
        f"Batch count ({_batch_count}): ",
        _batch_count,
    )
    # output_format = user_value(int, f"Output format (PNG)", 1)
    print(config.lcm_diffusion_setting)


def interactive_txt2img(
    config,
    context,
):
    global _batch_count
    config.lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value
    user_input = input("Write a prompt (write 'exit' to quit): ")
    while True:
        if user_input == "exit":
            return
        elif user_input == "":
            user_input = config.lcm_diffusion_setting.prompt
        config.lcm_diffusion_setting.prompt = user_input
        for i in range(0, _batch_count):
            context.generate_text_to_image(
                settings=config,
                device=DEVICE,
            )
        if _edit_lora_settings:
            interactive_lora(
                config,
                context,
            )
        user_input = input("Write a prompt: ")


def interactive_img2img(
    config,
    context,
):
    global _batch_count
    settings = config.lcm_diffusion_setting
    settings.diffusion_task = DiffusionTask.image_to_image.value
    steps = settings.inference_steps
    source_path = input("Image path: ")
    if source_path == "":
        print("Error : You need to provide a file in img2img mode")
        return
    settings.strength = user_value(
        float,
        f"img2img strength ({settings.strength}): ",
        settings.strength,
    )
    settings.inference_steps = int(steps / settings.strength + 1)
    user_input = input("Write a prompt (write 'exit' to quit): ")
    while True:
        if user_input == "exit":
            settings.inference_steps = steps
            return
        settings.init_image = Image.open(source_path)
        settings.prompt = user_input
        for i in range(0, _batch_count):
            context.generate_text_to_image(
                settings=config,
                device=DEVICE,
            )
        new_path = input(f"Image path ({source_path}): ")
        if new_path != "":
            source_path = new_path
        settings.strength = user_value(
            float,
            f"img2img strength ({settings.strength}): ",
            settings.strength,
        )
        if _edit_lora_settings:
            interactive_lora(
                config,
                context,
            )
        settings.inference_steps = int(steps / settings.strength + 1)
        user_input = input("Write a prompt: ")


def interactive_variations(
    config,
    context,
):
    global _batch_count
    settings = config.lcm_diffusion_setting
    settings.diffusion_task = DiffusionTask.image_to_image.value
    steps = settings.inference_steps
    source_path = input("Image path: ")
    if source_path == "":
        print("Error : You need to provide a file in Image variations mode")
        return
    settings.strength = user_value(
        float,
        f"Image variations strength ({settings.strength}): ",
        settings.strength,
    )
    settings.inference_steps = int(steps / settings.strength + 1)
    while True:
        settings.init_image = Image.open(source_path)
        settings.prompt = ""
        for i in range(0, _batch_count):
            generate_image_variations(
                settings.init_image,
                settings.strength,
            )
        if _edit_lora_settings:
            interactive_lora(
                config,
                context,
            )
        user_input = input("Continue in Image variations mode? (Y/n): ")
        if user_input.upper() == "N":
            settings.inference_steps = steps
            return
        new_path = input(f"Image path ({source_path}): ")
        if new_path != "":
            source_path = new_path
        settings.strength = user_value(
            float,
            f"Image variations strength ({settings.strength}): ",
            settings.strength,
        )
        settings.inference_steps = int(steps / settings.strength + 1)


def interactive_edsr(
    config,
    context,
):
    source_path = input("Image path: ")
    if source_path == "":
        print("Error : You need to provide a file in EDSR mode")
        return
    while True:
        output_path = FastStableDiffusionPaths.get_upscale_filepath(
            source_path,
            2,
            config.generated_images.format,
        )
        result = upscale_image(
            context,
            source_path,
            output_path,
            2,
        )
        user_input = input("Continue in EDSR upscale mode? (Y/n): ")
        if user_input.upper() == "N":
            return
        new_path = input(f"Image path ({source_path}): ")
        if new_path != "":
            source_path = new_path


def interactive_sdupscale_settings(config):
    steps = config.lcm_diffusion_setting.inference_steps
    custom_settings = {}
    print("> 1. Upscale whole image")
    print("> 2. Define custom tiles (advanced)")
    option = user_value(
        int,
        "Select an SD Upscale option (1): ",
        1,
    )
    if option not in range(1, 3):
        print("Wrong SD Upscale option!")
        return

    # custom_settings["source_file"] = args.file
    custom_settings["source_file"] = ""
    new_path = input(f"Input image path ({custom_settings['source_file']}): ")
    if new_path != "":
        custom_settings["source_file"] = new_path
    if custom_settings["source_file"] == "":
        print("Error : You need to provide a file in SD Upscale mode")
        return
    custom_settings["target_file"] = None
    if option == 2:
        custom_settings["target_file"] = input("Image to patch: ")
        if custom_settings["target_file"] == "":
            print("No target file provided, upscaling whole input image instead!")
            custom_settings["target_file"] = None
            option = 1
    custom_settings["output_format"] = config.generated_images.format
    custom_settings["strength"] = user_value(
        float,
        f"SD Upscale strength ({config.lcm_diffusion_setting.strength}): ",
        config.lcm_diffusion_setting.strength,
    )
    config.lcm_diffusion_setting.inference_steps = int(
        steps / custom_settings["strength"] + 1
    )
    if option == 1:
        custom_settings["scale_factor"] = user_value(
            float,
            f"Scale factor (2.0): ",
            2.0,
        )
        custom_settings["tile_size"] = user_value(
            int,
            f"Split input image into tiles of the following size, in pixels (256): ",
            256,
        )
        custom_settings["tile_overlap"] = user_value(
            int,
            f"Tile overlap, in pixels (16): ",
            16,
        )
    elif option == 2:
        custom_settings["scale_factor"] = user_value(
            float,
            "Input image to Image-to-patch scale_factor (2.0): ",
            2.0,
        )
        custom_settings["tile_size"] = 256
        custom_settings["tile_overlap"] = 16
    custom_settings["prompt"] = input(
        "Write a prompt describing the input image (optional): "
    )
    custom_settings["tiles"] = []
    if option == 2:
        add_tile = True
        while add_tile:
            print("=== Define custom SD Upscale tile ===")
            tile_x = user_value(
                int,
                "Enter tile's X position: ",
                0,
            )
            tile_y = user_value(
                int,
                "Enter tile's Y position: ",
                0,
            )
            tile_w = user_value(
                int,
                "Enter tile's width (256): ",
                256,
            )
            tile_h = user_value(
                int,
                "Enter tile's height (256): ",
                256,
            )
            tile_scale = user_value(
                float,
                "Enter tile's scale factor (2.0): ",
                2.0,
            )
            tile_prompt = input("Enter tile's prompt (optional): ")
            custom_settings["tiles"].append(
                {
                    "x": tile_x,
                    "y": tile_y,
                    "w": tile_w,
                    "h": tile_h,
                    "mask_box": None,
                    "prompt": tile_prompt,
                    "scale_factor": tile_scale,
                }
            )
            tile_option = input("Do you want to define another tile? (y/N): ")
            if tile_option == "" or tile_option.upper() == "N":
                add_tile = False

    return custom_settings


def interactive_sdupscale(
    config,
    context,
):
    settings = config.lcm_diffusion_setting
    settings.diffusion_task = DiffusionTask.image_to_image.value
    settings.init_image = ""
    source_path = ""
    steps = settings.inference_steps

    while True:
        custom_upscale_settings = None
        option = input("Edit custom SD Upscale settings? (y/N): ")
        if option.upper() == "Y":
            config.lcm_diffusion_setting.inference_steps = steps
            custom_upscale_settings = interactive_sdupscale_settings(config)
            if not custom_upscale_settings:
                return
            source_path = custom_upscale_settings["source_file"]
        else:
            new_path = input(f"Image path ({source_path}): ")
            if new_path != "":
                source_path = new_path
            if source_path == "":
                print("Error : You need to provide a file in SD Upscale mode")
                return
            settings.strength = user_value(
                float,
                f"SD Upscale strength ({settings.strength}): ",
                settings.strength,
            )
            settings.inference_steps = int(steps / settings.strength + 1)

        output_path = FastStableDiffusionPaths.get_upscale_filepath(
            source_path,
            2,
            config.generated_images.format,
        )
        generate_upscaled_image(
            config,
            source_path,
            settings.strength,
            upscale_settings=custom_upscale_settings,
            context=context,
            tile_overlap=32 if settings.use_openvino else 16,
            output_path=output_path,
            image_format=config.generated_images.format,
        )
        user_input = input("Continue in SD Upscale mode? (Y/n): ")
        if user_input.upper() == "N":
            settings.inference_steps = steps
            return